Chronic, unresolved inflammation has long been speculated to serve as an initiating and propagating factor in numerous neurodegenerative diseases, including a leading cause of irreversible blindness in the elderly, age-related macular degeneration (AMD). Intracellular multiprotein complexes called inflammasomes in combination with activated caspases facilitate production of pro-inflammatory cytokines such as interleukin 1 beta. Specifically, the nucleotide-binding oligomerization (NOD)-like receptor protein 3 (NLRP3) has received heightened attention due to the wide range of stimuli to which it can respond and its potential involvement in AMD.
View Article and Find Full Text PDFPurpose: Three-dimensional hyperpolarized Xe gas exchange imaging suffers from low SNR and long breath-holds, which could be improved using compressed sensing (CS). The purpose of this work was to assess whether gas exchange ratio maps are quantitatively preserved in CS-accelerated dissolved-phase Xe imaging and to investigate the feasibility of CS-dissolved Xe imaging with reduced-cost natural abundance (NA) xenon.
Methods: Xe gas exchange imaging was performed at 1.
Purpose: To evaluate the feasibility and utility of a deep learning (DL)-based reconstruction for improving the SNR of hyperpolarized Xe lung ventilation MRI.
Methods: Xe lung ventilation MRI data acquired from patients with asthma and/or chronic obstructive pulmonary disease (COPD) were retrospectively reconstructed with a commercial DL reconstruction pipeline at five different denoising levels. Quantitative imaging metrics of lung ventilation including ventilation defect percentage (VDP) and ventilation heterogeneity index (VH) were compared between each set of DL-reconstructed images and alternative denoising strategies including: filtering, total variation denoising and higher-order singular value decomposition.