Publications by authors named "G C Zheng"

To address the issue of low-elevation target height measurement in the Multiple Input Multiple Output (MIMO) radar, this paper proposes a height measurement method for meter-wave MIMO radar based on transmitted signals and receive filter design, integrating beamforming technology and cognitive processing methods. According to the characteristics of beamforming technology forming nulls at interference locations, we assume that the direct wave and reflected wave act as interference signals and hypothesize a direction for a hypothetical target. Then, the data received are processed to obtain the height of low-elevation-angle targets using a cognitive approach that jointly optimizes the transmitted signal and receive filter.

View Article and Find Full Text PDF

Phytoremediation technology is viewed as a potential solution for addressing soil uranium contamination. Sudan grass ( (Piper) Stapf.), noted for its robust root structure and resilience to heavy metals, has garnered significant attention.

View Article and Find Full Text PDF

Tomato, as the vegetable queen, is cultivated worldwide due to its rich nutrient content and unique flavor. Nondestructive technology provides efficient and noninvasive solutions for the quality assessment of tomatoes. However, processing the substantial datasets to achieve a robust model and enhance detection performance for nondestructive technology is a great challenge until deep learning is developed.

View Article and Find Full Text PDF

Advancements in single-cell multimodal techniques have greatly enhanced our understanding of disease-relevant loci identified through genome-wide association studies (GWASs). To investigate the biological connections between the eye and brain, we integrated bulk and single-cell multiomic profiles with GWAS summary statistics for eight neuropsychiatric and five ocular diseases. Our analysis uncovered five latent factors explaining 61.

View Article and Find Full Text PDF

Techniques that enable precise manipulations of subsets of neurons in the fly central nervous system (CNS) have greatly facilitated our understanding of the neural basis of behavior. Split-GAL4 driver lines allow specific targeting of cell types in and other species. We describe here a collection of 3060 lines targeting a range of cell types in the adult CNS and 1373 lines characterized in third-instar larvae.

View Article and Find Full Text PDF