Photonic reservoir computers (RC) come in single mode ring and multimode array geometries. We propose and simulate a photonic RC architecture using speckle in a multimode waveguide ring resonator that requires neither the ultra-high-speed analog-digital conversion nor the spatial light modulator used in other designs. We show that the equations for propagation around a multimode (MM) ring resonator along with an optical nonlinearity, and optical feedback can be cast exactly in the standard RC form with speckle mixing performing the pseudo-random matrix multiplications.
View Article and Find Full Text PDFA photonic integrated circuit (PIC) comprised of an 11 cm long multimode speckle waveguide, a 1 × 32 splitter, and a linear grating coupler array is fabricated and utilized to receive 2 GHz of radio-frequency (RF) signal bandwidth from 2.5 to 4.5 GHz using compressive sensing (CS).
View Article and Find Full Text PDFReservoir computing is a recurrent machine learning framework that expands the dimensionality of a problem by mapping an input signal into a higher-dimension reservoir space that can capture and predict features of complex, non-linear temporal dynamics. Here, we report on a bulk electro-optical demonstration of a reservoir computer using speckles generated by propagating a laser beam modulated with a spatial light modulator through a multimode waveguide. We demonstrate that the hardware can successfully perform a multivariate audio classification task performed using the Japanese vowel speakers public data set.
View Article and Find Full Text PDFWe demonstrate measurement of RF signals in the 2-19 GHz band using a photonic compressive sensing (CS) receiver. The RF is modulated onto chirped optical pulses that then propagate through a multimode fiber that produces the random projections needed for CS via optical speckle. Our system makes 16 independent measurements per optical pulse and we demonstrate several calibration techniques to obtain the CS measurement matrix from these measurements.
View Article and Find Full Text PDFCompressive sensing (CS) of sparse gigahertz-band RF signals using microwave photonics may achieve better performances with smaller size, weight, and power than electronic CS or conventional Nyquist rate sampling. The critical element in a CS system is the device that produces the CS measurement matrix (MM). We show that passive speckle patterns in multimode waveguides potentially provide excellent MMs for CS.
View Article and Find Full Text PDF