Acute myocardial infarction (AMI) causes ischemic damage and cardiac remodeling that ultimately progresses into ischemic cardiomyopathy (ICM). Coronary revascularization reduces morbidity and mortality from an MI, however, reperfusion also induces oxidative stress that drives cardiac myocyte (CM) dysfunction and ICM. Oxidative stress in CMs leads to reactive oxygen species (ROS) production and mitochondrial damage.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
December 2024
High-density lipoprotein (HDL) oxylipins regulate inflammation, and acute systemic inflammation can precipitate cognitive impairment. Females have more HDL and stronger immune responses than males, yet higher dementia risk. Little is known about sex differences in oxylipin responses to inflammatory stimuli and potential crosstalk between acute systemic inflammation and central oxylipin signaling in either sex.
View Article and Find Full Text PDFAberrant high-density lipoprotein (HDL) function is implicated in inflammation-associated pathologies. While HDL ABCA1-mediated reverse cholesterol and phospholipid transport are well described, the movement of pro-/anti-inflammatory lipids has not been explored. HDL phospholipids are the largest reservoir of circulating arachidonic acid-derived oxylipins.
View Article and Find Full Text PDFBackground: We have shown that ω3 polyunsaturated fatty acids (PUFAs) reduce risk for heart failure, regardless of ejection fraction status. Ventricular remodeling and reduced ventricular performance precede overt hear failure, however there is little insight into how PUFAs contribute to maladaptive signaling over time. PUFAs are agonists for regulatory activity at g-protein coupled receptors such as Ffar4, and downstream as substrates for monooxygenases (e.
View Article and Find Full Text PDFSemiochemicals can be used to manipulate insect behaviour for sustainable pest management strategies, but their high volatility is a major issue for their practical implementation. Inclusion of these molecules within porous materials is a potential solution to this issue, as it can allow for a slower and more controlled release. In this work, we demonstrate that a series of Zr(IV) and Al(III) metal-organic frameworks (MOFs) with channel-type pores enable controlled release of three semiochemicals over 100 days by pore size design, with the uptake and rate of release highly dependent on the pore size.
View Article and Find Full Text PDF