Publications by authors named "G C Rovnyak"

Synthesis and SAR of substituted pyrrolotriazine-4-one analogues as Eg5 inhibitors are described. Many of these analogues displayed potent inhibitory activities in the Eg5 ATPase and A2780 cell proliferation assays. In addition, pyrrolotriazine-4-one analogue 26 demonstrated in vivo efficacy in an iv P388 murine leukemia model.

View Article and Find Full Text PDF

Tetrahydroquinoline-based small molecule inhibitors of farnesyltransferase (FT) have been identified. Lead compounds were shown to have nanomolar to sub-nanomolar activity in biochemical assays with excellent potency in a Ras-mutated cellular reversion assay. BMS-316810 (9e), a 0.

View Article and Find Full Text PDF

Multiple delayed rectifier potassium currents, including I(Ks), are responsible for the repolarization and termination of the cardiac action potential, and blockers of these currents may be useful as antiarrhythmic agents. Modification of compound 5 produced 19(S) that is the most potent I(Ks) blocker reported to date with >5000-fold selectivity over other cardiac ion channels. Further modification produced 24A with 23% oral bioavailability.

View Article and Find Full Text PDF

The effect on potency and selectivity of modifications at the C6 position of the cardioprotective K(ATP) opener BMS-180448 (2) is described. Structure-activity studies show that a variety of electron-withdrawing groups (ketone, sulfone, sulfonamide, etc.) are tolerated for cardioprotective activity as measured by EC(25) values for an increase in time to the onset of contracture in globally ischemic rat hearts.

View Article and Find Full Text PDF

This paper describes our studies aimed at the discovery of structurally distinct analogs of the cardioprotective KATP opener BMS-180448 (2) with improved selectivity for the ischemic myocardium. The starting compound 6, derived from the indole analog 4. showed good cardioprotective potency and excellent selectivity compared to 2 and the first-generation KATP opener cromakalim (1).

View Article and Find Full Text PDF