Plant-specific insect scouting and prediction are still challenging in most crop systems. In this article, a machine-learning algorithm is proposed to predict populations during whiteflies (Bemisia tabaci, Hemiptera; Gennadius Aleyrodidae) scouting and aid in determining the population distribution of adult whiteflies in cotton plant canopies. The study investigated the main location of adult whiteflies relative to plant nodes (stem points where leaves or branches emerge), population variation within and between canopies, whitefly density variability across fields, the impact of dense nodes on overall canopy populations, and the feasibility of using machine learning for prediction.
View Article and Find Full Text PDFAutonomous navigation in agricultural fields presents a unique challenge due to the unpredictable outdoor environment. Various approaches have been explored to tackle this task, each with its own set of challenges. These include GPS guidance, which faces availability issues and struggles to avoid obstacles, and vision guidance techniques, which are sensitive to changes in light, weeds, and crop growth.
View Article and Find Full Text PDFIn this paper, we present the development of a low-cost distributed computing pipeline for cotton plant phenotyping using Raspberry Pi, Hadoop, and deep learning. Specifically, we use a cluster of several Raspberry Pis in a primary-replica distributed architecture using the Apache Hadoop ecosystem and a pre-trained Tiny-YOLOv4 model for cotton bloom detection from our past work. We feed cotton image data collected from a research field in Tifton, GA, into our cluster's distributed file system for robust file access and distributed, parallel processing.
View Article and Find Full Text PDFThe knowledge that precision weed control in agricultural fields can reduce waste and increase productivity has led to research into autonomous machines capable of detecting and removing weeds in real time. One of the driving factors for weed detection is to develop alternatives to herbicides, which are becoming less effective as weed species develop resistance. Advances in deep learning technology have significantly improved the robustness of weed detection tasks.
View Article and Find Full Text PDFUsing artificial intelligence (AI) and the IoT (Internet of Things) is a primary focus of applied engineering research to improve agricultural efficiency. This review paper summarizes the engagement of artificial intelligence models and IoT techniques in detecting, classifying, and counting cotton insect pests and corresponding beneficial insects. The effectiveness and limitations of AI and IoT techniques in various cotton agricultural settings were comprehensively reviewed.
View Article and Find Full Text PDF