Human overexploitation contributed strongly to the loss of hundreds of bird species across Oceania, including nine giant, flightless birds called moa. The inevitability of anthropogenic moa extinctions in New Zealand has been fiercely debated. However, we can now rigorously evaluate their extinction drivers using spatially explicit demographic models capturing species-specific interactions between moa, natural climates and landscapes, and human colonists.
View Article and Find Full Text PDFBackground And Objectives: Alzheimer disease (AD) is a heterogeneous neurodegenerative disorder influenced by genetic and environmental factors. Conditions such as type 2 diabetes (T2D), cardiovascular disease, obesity, depression, and obstructive sleep apnea (OSA) increase AD risk and progression. This study aimed to examine the genetic predisposition to these conditions and their effect on AD pathophysiology, risk, and progression.
View Article and Find Full Text PDFThe scientific discipline of endocrinology has been invaluable to our understanding of the estrous cycle. In the second half of the twentieth century the development of immunoassay technologies provided a rapid and sensitive method to quantify circulating concentrations of reproductive hormones and relate them to stage of the estrous cycle and physiological status of the animal. Ovarian ultrasonography provided the ability to track the growth and regression of ovarian structures within the same animal across the estrous cycle in real time and, in combination with hormonal profiling, accurately identify mechanisms regulating the estrous cycle and early pregnancy.
View Article and Find Full Text PDFMycovores (animals that consume fungi) are important for fungal spore dispersal, including ectomycorrhizal (ECM) fungi symbiotic with forest-forming trees. As such, fungi and their symbionts may be impacted by mycovore extinction. New Zealand (NZ) has a diversity of unusual, colourful, endemic sequestrate (truffle-like) fungi, most of which are ECM.
View Article and Find Full Text PDFLeaf dry matter content (LDMC) is an important determinant of plant flammability. Investigating global patterns of LDMC could provide insights into worldwide plant flammability patterns, informing wildfire management. We characterised global patterns of LDMC across 4074 species from 216 families, revealing that phylogenetic and environmental constraints influence LDMC.
View Article and Find Full Text PDF