Publications by authors named "G C Celotti"

This work deals with the preparation of bioactive ceramic composites to be employed for the development of load-bearing bone substitutes, made of hydroxyapatite (Ca(10)(PO(4))(6)(OH)(2), HA) and bioactive dicalcium silicate (Ca(2)SiO(4), C(2)S) as a reinforcing phase. The composite materials were prepared by Fast Hot-Pressing (FHP), which allowed the rapid sintering of monolithic ceramics at temperatures up to 1500 degrees C, well above the commonly adopted temperatures for the consolidation of hydroxyapatite (1200-1300 degrees C). The purpose was to achieve the grain coalescence of both HA and the strengthening phase, so that to obtain a homogeneous ceramic material characterized by controlled phase composition and improved mechanical strength; the dwell time was reduced as much as possible to prevent HA decomposition and excessive grain growth.

View Article and Find Full Text PDF

Sr and CO3 co-substituted hydroxyapatite (SrCHA) nanopowder was synthesized by neutralization. The powder was characterized. The improved solubility in Hanks' balanced solution of SrCHA granules (400-600 microm of dimensional range), potentially usable as bone filler, was assessed and compared with that of an analogous carbonate free granulate.

View Article and Find Full Text PDF

Porous apatites, which during resorption can release in situ Sr ions, were prepared to associate an anti-osteoporotic action with the peculiar features of the inorganic phase constituting the bone. Sr-substituted hydroxyapatite (SrHA) powder was directly synthesized using the classical neutralization route, but including Sr ions, and characterized. The higher solubility of SrHA granules of 400-600 microm size, potentially usable as a bone filler, was assessed compared with that of analogous stoichiometric HA granules.

View Article and Find Full Text PDF

In the last decade synthetic apatites mimicking the human natural one have been widely prepared and characterized from the physico-chemical point of view; however a shading zone is still remaining related to the evaluation and distinction of the less crystalline part, almost amorphous, and the crystallographically well ordered, nano-sized part, inside the apatite itself. Actually natural apatite forming bone tissue can include both types of crystals whose prevalence is dependent from the specific bone evolution stage and the specialized tissue performance. The quantitative description of such a combination usually represents a puzzling problem, but the result can also clarify the definition of "crystallinity in apatite" that appears still controversial.

View Article and Find Full Text PDF

Poorly crystalline apatite has been directly nucleated on self-assembling alginate chains by neutralization synthesis to obtain a biomimetic artificial bone-like composite. It has been observed that in preparing HA/alginate composites, Ca2+ ions present on the apatitic surface cross-link the alginate chains to produce a material with different morphology and thermal stability, both functions of the HA/alginate weight ratio. In vitro tests were performed on different samples in terms of both the HA/alginate ratio and synthesis temperature.

View Article and Find Full Text PDF