We compare the temperature dependence of resistivity rho(T) of Si-metal-oxide-semiconductor field-effect transistors with the recent theory by Zala et al. In this comparison, the effective mass m* and g* factor for mobile electrons have been determined from independent measurements. An anomalous increase of rho with temperature, which has been considered as a signature of the "metallic" state, can be described quantitatively by the interaction effects in the ballistic regime.
View Article and Find Full Text PDFWe studied the Shubnikov-de Haas (SdH) oscillations in high-mobility Si-MOS samples over a wide range of carrier densities n approximately (1-50)x10(11) cm(-2), which includes the vicinity of the apparent metal-insulator transition in two dimensions (2D MIT). Using a novel technique of measuring the SdH oscillations in superimposed and independently controlled parallel and perpendicular magnetic fields, we determined the spin susceptibility chi(*), the effective mass m(*), and the g(*) factor for mobile electrons. These quantities increase gradually with decreasing density; near the 2D MIT, we observed enhancement of chi(*) by a factor of approximately 4.
View Article and Find Full Text PDFWe report studies of the magnetoresistance (MR) in a two-dimensional electron system in (100) Si-inversion layers, for perpendicular and parallel orientations of the current with respect to the magnetic field in the 2D plane. The magnetoresistance is almost isotropic; this result does not support the suggestion of its orbital origin. In the hopping regime, however, the MR contains a weak anisotropic component that is nonmonotonic in the magnetic field.
View Article and Find Full Text PDFThe temperature and density dependence of the phase coherence time tau(phi) in high-mobility silicon inversion layers was determined from the magnetoresistivity due to weak localization. The upper temperature limit for single-electron quantum interference effects was delineated by comparing tau(phi) with the momentum relaxation time tau. A comparison between the density dependence of the borders for quantum interference effects and the strong resistivity drop reveals that these effects are not related to each other.
View Article and Find Full Text PDF