Magnetic resonance spectroscopic imaging (MRSI) enables the simultaneous noninvasive acquisition of MR spectra from multiple spatial locations inside the brain. Although H-MRSI is increasingly used in the human brain, it is not yet widely applied in the preclinical setting, mostly because of difficulties specifically related to very small nominal voxel size in the rat brain and low concentration of brain metabolites, resulting in low signal-to-noise ratio (SNR). In this context, we implemented a free induction decay H-MRSI sequence (H-FID-MRSI) in the rat brain at 14.
View Article and Find Full Text PDFProton magnetic resonance spectroscopic imaging (H-MRSI) is a powerful tool that enables the multidimensional non-invasive mapping of the neurochemical profile at high resolution over the entire brain. The constant demand for higher spatial resolution in H-MRSI has led to increased interest in post-processing-based denoising methods aimed at reducing noise variance. The aim of the present study was to implement two noise-reduction techniques, Marchenko-Pastur principal component analysis (MP-PCA) based denoising and low-rank total generalized variation (LR-TGV) reconstruction, and to test their potential with and impact on preclinical 14.
View Article and Find Full Text PDFIntroduction: Type C hepatic encephalopathy (HE) is a decompensating event of chronic liver disease leading to severe motor and cognitive impairment. The progression of type C HE is associated with changes in brain metabolite concentrations measured by H magnetic resonance spectroscopy (MRS), most noticeably a strong increase in glutamine to detoxify brain ammonia. In addition, alterations of brain cellular architecture have been measured by histology in a rat model of type C HE.
View Article and Find Full Text PDFDalton Trans
December 2023
Anionic redox-active ligands such as -amidophenolates, catecholates, dithiolenes, 1,2-benzendithiolates, 2-amidobenzenethiolates, reduced α-diimines, ferrocenyl and porphyrinates are capable of reversible oxidation and thus have the ability to act as sources of electrons for metal centres. These and other non-innocent ligands have been employed in coordination complexes of base transition metals to influence their redox chemistry and afford compounds with useful catalytic, optical, magnetic and conducting properties. Despite the focus in contemporary main group chemistry on designing reactive compounds with potential catalytic activity, comparatively few studies exploring the chemistry of main group metal complexes incorporating redox-active ligands have been reported.
View Article and Find Full Text PDFSingle primer enrichment technology (SPET) is a novel high-throughput genotyping method based on short-read sequencing of specific genomic regions harboring polymorphisms. SPET provides an efficient and reproducible method for genotyping target loci, overcoming the limits associated with other reduced representation library sequencing methods that are based on a random sampling of genomic loci. The possibility to sequence regions surrounding a target SNP allows the discovery of thousands of closely linked, novel SNPs.
View Article and Find Full Text PDF