Large-scale instabilities occurring in the presence of small-scale turbulent fluctuations are frequently observed in geophysical or astrophysical contexts but are difficult to reproduce in the laboratory. Using extensive numerical simulations, we report here on intense recurrent bursts of turbulence in plane Poiseuille flow rotating about a spanwise axis. A simple model based on the linear instability of the mean flow can predict the structure and time scale of the nearly periodic and self-sustained burst cycles.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
January 2014
The dynamical behavior of almost neutrally buoyant finite-size rigid fibers or rods in turbulent channel flow is studied by direct numerical simulations. The time evolution of the fiber orientation and translational and rotational motions in a statistically steady channel flow is obtained for three different fiber lengths. The turbulent flow is modeled by an entropy lattice Boltzmann method, and the interaction between fibers and carrier fluid is modeled through an external boundary force method.
View Article and Find Full Text PDF