We present a series of shock-wave measurements on aluminum based on the use of a simultaneous Photon Doppler Velocimetry (PDV) and triature velocity interferometer system for any reflector. Our dual setup can accurately measure shock velocities, especially in the low-speed range (<100 m s) and fast dynamics (<10 ns) where measurements are critical in terms of resolution and unfolding techniques. Especially, the direct comparison of both techniques at the same measurement point helps the physicist in determining coherent settings for the short time Fourier transform analysis of the PDV, providing increased reliability of the velocity measurement with a global resolution of few m s in velocity and few ns FWHM in time.
View Article and Find Full Text PDFPhys Rev Lett
October 2021
We report a laser-plasma experiment that was carried out at the LMJ-PETAL facility and realized the first magnetized, turbulent, supersonic (Ma_{turb}≈2.5) plasma with a large magnetic Reynolds number (Rm≈45) in the laboratory. Initial seed magnetic fields were amplified, but only moderately so, and did not become dynamically significant.
View Article and Find Full Text PDFIn a recent experimental campaign, we used laser-accelerated relativistic hot electrons to ensure heating of thin titanium wire targets up to a warm dense matter (WDM) state [EPL114, 45002 (2016)10.1209/0295-5075/114/45002]. The WDM temperature profiles along several hundred microns of the wire were inferred by using spatially resolved X-ray emission spectroscopy looking at the Ti K characteristic lines.
View Article and Find Full Text PDFWe report on the optimization of a BremsStrahlung Cannon (BSC) design for the investigation of laser-driven fast electron populations in a shock ignition relevant experimental campaign at the Laser Megajoule-PETawatt Aquitaine Laser facility. In this regime with laser intensities of 10 W/cm-10 W/cm, fast electrons with energies ≤100 keV are expected to be generated through Stimulated Raman Scattering (SRS) and Two Plasmon Decay (TPD) instabilities. The main purpose of the BSC in our experiment is to identify the contribution to x-ray emission from bremsstrahlung of fast electrons originating from SRS and TPD, with expected temperatures of 40 keV and 95 keV, respectively.
View Article and Find Full Text PDFTaking benefit of the R3B/SOFIA setup to measure the mass and the nuclear charge of both fission fragments in coincidence with the total prompt-neutron multiplicity, the scission configurations are inferred along the thorium chain, from the asymmetric fission in the heavier isotopes to the symmetric fission in the neutron-deficient thorium. Against all expectations, the symmetric scission in the light thorium isotopes shows a compact configuration, which is in total contrast to what is known in the fission of the heavier thorium isotopes and heavier actinides. This new main symmetric scission mode is characterized by a significant drop in deformation energy of the fission fragments of about 19 MeV, compared to the well-known symmetric scission in the uranium-plutonium region.
View Article and Find Full Text PDF