Publications by authors named "G Boissonnet"

The impact of small deposits of calcium-magnesium-aluminium silicates (CMAS) on the top of thermal barrier coatings (TBCs) made of yttria-stabilised zirconia (YSZ) produced via electron-beam physical vapour deposition (EB-PVD) is shown to play a role in the microstructural and chemical stability of the coatings; hence, it also affects the thermal insulation potential of TBCs. Therefore, the present work investigates the degradation potential of minor CMAS deposits (from 0.25 to 5 mg·cm) annealed at 1250 °C for 1 h on a novel ErO-YO co-stabilised ZrO (ErYSZ) EB-PVD TBC, which is compared to the standard YSZ coating.

View Article and Find Full Text PDF

The interrelationships between proteasomes and viral gene products are very complex. 20S proteasomes associate with a number of viral mRNAs which are cleaved by proteasome's associated endonuclease activity. In addition proteasome's endopeptidase activities are involved in the presentation of viral antigens.

View Article and Find Full Text PDF

The 20S proteasome (prosome) is a highly organized multiprotein complex with approximate molecular weight of about 700 kDa. Whilst the role of the proteasome in the processing and turnover of cellular proteins is becoming clearer, its relationship with RNA remains still obscure. Here we focus on the nature and function of proteasome associated endonuclease activity.

View Article and Find Full Text PDF

The 20S proteasome (prosome) is a highly organized multi-protein complex with approximate molecular weight of about 700 kDa. Whilst the role of the proteasome in the processing and turnover of cellular proteins is becoming clearer, its relationship with RNA remains obscure. Over the last decade the possibility of association of proteasomes with specific RNAs or mRNPs have been particularly controversial.

View Article and Find Full Text PDF

1. A study was carried out of post-natal evolution of the oxidative, glycolytic and contractile capacities in various types of rabbit muscle. 2.

View Article and Find Full Text PDF