Publications by authors named "G Birkl"

We have conceived, built, and operated a cryogenic vacuum valve with opening and closing times as short as 50 ms that can be used in strong magnetic fields and across a broad range of duty cycles. It is used to seal a cryogenic Penning trap at liquid-helium temperature for long-term storage of highly charged ions in a vacuum better than 10-15 hPa from a room-temperature ion beamline at vacuum conditions around 10-9 hPa. It will significantly improve any experiment where a volume at the most extreme vacuum conditions must be temporarily connected to a less demanding vacuum during repeated experimental cycles.

View Article and Find Full Text PDF

We report on the realization of a novel platform for the creation of large-scale 3D multilayer configurations of planar arrays of individual neutral-atom qubits: a microlens-generated Talbot tweezer lattice that extends 2D tweezer arrays to the third dimension at no additional costs. We demonstrate the trapping and imaging of rubidium atoms in integer and fractional Talbot planes and the assembly of defect-free atom arrays in different layers. The Talbot self-imaging effect for microlens arrays constitutes a structurally robust and wavelength-universal method for the realization of 3D atom arrays with beneficial scaling properties.

View Article and Find Full Text PDF

We present a current modulation technique for diode laser systems, which is specifically designed for high-bandwidth laser frequency stabilization and wideband frequency modulation with a flat transfer function. It consists of a dedicated current source and an impedance matching circuit both placed close to the laser diode. The transfer behavior of the system is analyzed under realistic conditions employing an external cavity diode laser (ECDL) system.

View Article and Find Full Text PDF

We report on the development, implementation, and characterization of digital controllers for laser frequency stabilization as well as intensity stabilization and control. Our design is based on the STEMlab (originally Red Pitaya) platform. The presented analog hardware interfaces provide all necessary functionalities for the designated applications and can be integrated in standard 19-in.

View Article and Find Full Text PDF

We present a novel platform of optical tweezers which combines rapid prototyping of user-definable microlens arrays with spatial light modulation (SLM) for dynamical control of each associated tweezer spot. Applying femtosecond direct laser writing, we manufacture a microlens array of 97 lenslets exhibiting quadratic and hexagonal packing and a transition region between the two. We use a digital micromirror device (DMD) to adapt the light field illuminating the individual lenslets and present a detailed characterization of the full optical system.

View Article and Find Full Text PDF