Androgen receptor (AR) transcriptional reactivation plays a key role in the development and progression of lethal castration-resistant prostate cancer (CRPC). Recurrent alterations in the AR enable persistent AR pathway signaling and drive resistance to the treatment of second-generation antiandrogens. AR F877L, a point mutation in the ligand binding domain of the AR, was identified in patients who acquired resistance to enzalutamide or apalutamide.
View Article and Find Full Text PDFNumerous mechanisms of resistance arise in response to treatment with second-generation androgen receptor (AR) pathway inhibitors in metastatic castration-resistant prostate cancer (mCRPC). Among these, point mutations in the ligand binding domain can transform antagonists into agonists, driving the disease through activation of AR signaling. To address this unmet need, we report the discovery of JNJ-63576253, a next-generation AR pathway inhibitor that potently abrogates AR signaling in models of human prostate adenocarcinoma.
View Article and Find Full Text PDFPersistent androgen receptor (AR) activation drives therapeutic resistance to second-generation AR pathway inhibitors and contributes to the progression of advanced prostate cancer. One resistance mechanism is point mutations in the ligand binding domain of AR that can transform antagonists into agonists. The AR F877L mutation, identified in patients treated with enzalutamide or apalutamide, confers resistance to both enzalutamide and apalutamide.
View Article and Find Full Text PDFBackground: Antiandrogens are effective therapies that block androgen receptor (AR) transactivation and signaling in over 50% of castration-resistant prostate cancer (CRPC) patients. However, an estimated 30% of responders will develop resistance to these therapies within 2 years. JNJ-pan-AR is a broad-spectrum AR antagonist that inhibits wild-type AR as well as several mutated versions of AR that have emerged in patients on chronic antiandrogen treatment.
View Article and Find Full Text PDFCastration-resistant prostate cancers (CRPCs) lose sensitivity to androgen-deprivation therapies but frequently remain dependent on oncogenic transcription driven by the androgen receptor (AR) and its splice variants. To discover modulators of AR-variant activity, we used a lysate-based small-molecule microarray assay and identified KI-ARv-03 as an AR-variant complex binder that reduces AR-driven transcription and proliferation in prostate cancer cells. We deduced KI-ARv-03 to be a potent, selective inhibitor of CDK9, an important cofactor for AR, MYC, and other oncogenic transcription factors.
View Article and Find Full Text PDF