Nucleotide-binding leucine-rich repeat (NLR) disease resistance genes typically confer resistance against races of a single pathogen. Here, we report that Yr87/Lr85, an NLR gene from Aegilops sharonensis and Aegilops longissima, confers resistance against both P. striiformis tritici (Pst) and Puccinia triticina (Pt) that cause stripe and leaf rust, respectively.
View Article and Find Full Text PDFFusarium head blight (FHB) of barley (Hordeum vulgare) causes yield losses and accumulation of trichothecene mycotoxins (e.g. deoxynivalenol [DON]) in grains.
View Article and Find Full Text PDFPlant cell walls act both as a barrier to pathogen entry and as a source of signaling molecules that can modulate plant immunity. Cell walls consist mainly of three polymeric sugars: cellulose, pectin, and hemicellulose (Mohnen et al., Biomass Recalcitrance: deconstructing the plant cell wall for bioenergy, 2008).
View Article and Find Full Text PDFPlant immune responses activated through the perception of microbe-associated molecular patterns, leading to pattern-triggered immunity, are tightly regulated. This results in low immune responses in the absence of pathogens and a rapid return to the resting state following an activation event. Here, we show that two genes, and , negatively regulate salicylic acid accumulation and immunity in Arabidopsis ().
View Article and Find Full Text PDFSARD1 is an activator of plant immunity that promotes production of the hormone salicylic acid (SA) and activation of defense gene expression. SARD1 itself is strongly inducible by infection. Here, we investigated the transcriptional control of SARD1.
View Article and Find Full Text PDF