The collision-coalescence process of inertial particles in turbulence is held responsible for the quick growth of cloud droplets from ∼15 to ∼50 µm in diameter, but it is not well understood. Turbulence has two effects on cloud droplets: (1) it brings them closer together, preferentially concentrating them in certain parts of the flow, and (2) it sporadically creates high accelerations, causing droplets to detach from the underlying flow. These turbulence-cloud droplet interactions are difficult to study numerically or in the laboratory due to the large range of scales involved in atmospheric turbulence, so in situ measurements are needed.
View Article and Find Full Text PDFWe measure the absolute dispersion of clouds of monodisperse, phosphorescent droplets in turbulent air by means of high-speed image-intensified video recordings. Laser excitation allows the initial preparation of well-defined, pencil-shaped luminous droplet clouds in a completely nonintrusive way. We find that the dispersion of the clouds is faster than the dispersion of fluid elements.
View Article and Find Full Text PDFInterferometric particle imaging provides a simple way to measure the probability density function (PDF) of droplet sizes from out-focus images. The optical setup is straightforward, but the interpretation of the data is a problem when particle images overlap. We propose a new way to analyze the images.
View Article and Find Full Text PDF