Rev Sci Instrum
December 2018
At CERN, large hadron collider heavy ion and super proton synchrotron fixed target experiments are performed thanks to the Heavy-ion Facility, composed of different accelerators. The starting point is Linac3, which delivers 4.2 MeV/u ion beams to the low energy ion ring.
View Article and Find Full Text PDFLinac3 is the first accelerator in the heavy ion injector chain of the Large Hadron Collider (LHC), providing multiply charged heavy ion beams for the CERN experimental program. The ion beams are produced with GTS-LHC, a 14.5 GHz electron cyclotron resonance ion source, operated in afterglow mode.
View Article and Find Full Text PDFRecent medical applications of ions such as carbon and helium have proved extremely effective for the treatment of human patients. However, before now a comprehensive study of the effects of different light ions on organic targets has not been completed. There is a strong desire for a dedicated facility which can produce ions in the range of protons to neon in order to perform this study.
View Article and Find Full Text PDFLinac4, a 160 MeV normal-conducting H(-) linear accelerator, is the first step in the upgrade of the beam intensity available from the LHC proton injectors at CERN. The Linac4 Low Energy Beam Transport (LEBT) line from the pulsed 2 MHz RF driven ion source, to the 352 MHz RFQ (Radiofrequency Quadrupole) has been built and installed at a test stand, and has been used to transport and match to the RFQ a pulsed 14 mA H(-) beam at 45 keV. A temporary slit-and-grid emittance measurement system has been put in place to characterize the beam delivered to the RFQ.
View Article and Find Full Text PDFExploiting the manipulation of the SLAC Linear Collider electron-beam polarization, we present precise direct measurements of the parity-violation parameters A(c) and A(b) in the Z-boson-c-quark and Z-boson-b-quark coupling. Quark-antiquark discrimination is accomplished via a unique algorithm that takes advantage of the precise SLAC Large Detector charge coupled device vertex detector, employing the net charge of displaced vertices as well as the charge of kaons that emanate from those vertices. From the 1996-1998 sample of 400 000 Z decays, produced with an average beam polarization of 73.
View Article and Find Full Text PDF