Background: Energy deficiency and mitochondrial failure have been recognized as a prominent, early event in Alzheimer's disease (AD). Recently, we demonstrated that chronic exposure to amyloid-beta (Abeta) in human neuroblastoma cells over-expressing human wild-type amyloid precursor protein (APP) resulted in (i) activity changes of complexes III and IV of the oxidative phosphorylation system (OXPHOS) and in (ii) a drop of ATP levels which may finally instigate loss of synapses and neuronal cell death in AD. Therefore, the aim of the present study was to investigate whether standardized Ginkgo biloba extract LI 1370 (GBE) is able to rescue Abeta-induced defects in energy metabolism.
View Article and Find Full Text PDFAlzheimer's disease (AD) and type 2 diabetes mellitus (T2DM) are leading causes of morbidity and mortality in the elderly. Both diseases are characterized by amyloid deposition in target tissues: aggregation of amylin in T2DM is associated with loss of insulin-secreting beta-cells, while amyloid beta (A beta) aggregation in AD brain is associated with neuronal loss. Here, we used quantitative iTRAQ proteomics as a discovery tool to show that both A beta and human amylin (HA) deregulate identical proteins, a quarter of which are mitochondrial, supporting the notion that mitochondrial dysfunction is a common target in these two amyloidoses.
View Article and Find Full Text PDFAlzheimer's disease (AD) is characterized by amyloid-beta (Abeta)-containing plaques, neurofibrillary tangles, and neuron and synapse loss. Tangle formation has been reproduced in P301L tau transgenic pR5 mice, whereas APP(sw)PS2(N141I) double-transgenic APP152 mice develop Abeta plaques. Cross-breeding generates triple transgenic ((triple)AD) mice that combine both pathologies in one model.
View Article and Find Full Text PDFEvidence suggests that amyloid-beta (Abeta) protein is a key factor in the pathogenesis of Alzheimer's disease (AD) and it has been recently proposed that mitochondria are involved in the biochemical pathway by which Abeta can lead to neuronal dysfunction. Here we investigated the specific effects of Abeta on mitochondrial function under physiological conditions. Mitochondrial respiratory functions and energy metabolism were analyzed in control and in human wild-type amyloid precursor protein (APP) stably transfected human neuroblastoma cells (SH-SY5Y).
View Article and Find Full Text PDFAlzheimer's disease (AD) is the most prevalent neurodegenerative disease in humans and is characterized by neuronal loss, neurofibrillary tangles and beta-amyloid deposition. The interaction between neurotrophins and their tyrosine kinase (trk) receptors is important for cellular differentiation and survival. Interestingly, marked reductions in neurotrophins and receptors have been reported in AD.
View Article and Find Full Text PDF