Bimetallic colloidal CoPt nanoalloys with low platinum content were successfully synthesized following a modified polyol approach. Powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), and transmission electron microscopy (TEM) studies were performed to estimate the crystal structure, morphology, and surface functionalization of the colloids, respectively, while the room-temperature magnetic properties were measured using a vibrating sample magnetometer (VSM). The particles exhibit excellent uniformity, with a narrow size distribution, and display strong room-temperature hysteretic ferromagnetic behavior even in the as-made form.
View Article and Find Full Text PDFMagnetic FeO nanoparticles "decorated" by LAPONITE® nanodisks have been materialized utilizing the Schikorr reaction following a facile approach and tested as mediators of heat for localized magnetic hyperthermia (MH) and as magnetic resonance imaging (MRI) agents. The synthetic protocol involves the interaction between two layered inorganic compounds, ferrous hydroxide, Fe(OH), and the synthetic smectite LAPONITE® clay Na[(SiMgLi)O(OH)], towards the formation of superparamagnetic FeO nanoparticles, which are well decorated by the diamagnetic clay nanodisks. The latter imparts high negative -potential values (up to -34.
View Article and Find Full Text PDFFe-based colloids with a core/shell structure consisting of metallic iron and iron oxide were synthesized by a facile hot injection reaction of iron pentacarbonyl in a multi-surfactant mixture. The size of the colloidal particles was affected by the reaction temperature and the results demonstrated that their stability against complete oxidation related to their size. The crystal structure and the morphology were identified by powder X-ray diffraction and transmission electron microscopy, while the magnetic properties were studied at room temperature with a vibrating sample magnetometer.
View Article and Find Full Text PDFHKUST-1, a Cu-based metalorganic framework (MOF), was synthesized solvothermally, functionalized with polyethyleneimine (PEI), and hybridized with graphene oxide (GO) and functionalized GO for HS removal. MOF synthesis approach, molecular weight of amines, and the content of GO in the hybrid adsorbents were systematically varied. The adsorbent materials were characterized by XRD, FTIR, SEM, elemental analysis, liquid N adsorption-desorption, water vapor and oxygen sorption, and subsequently tested for HS adsorption in a breakthrough column.
View Article and Find Full Text PDFIron carbide nanoplatelets with an orthorhombic FeC structure were synthesized following a simple liquid chemical approach. The formation of the carbide phases was shown to depend on the presence of a long chain diol and the reaction temperature. Confirmation of the iron carbide phases and structural characterization was made by X-ray diffraction (XRD) and Mössbauer spectroscopy.
View Article and Find Full Text PDF