We analyze the recovery of different roles in a network modeled by a directed graph, based on the so-called Neighborhood Pattern Similarity approach. Our analysis uses results from random matrix theory to show that, when assuming that the graph is generated as a particular stochastic block model with Bernoulli probability distributions for the different blocks, then the recovery is asymptotically correct when the graph has a sufficiently large dimension. Under these assumptions there is a sufficient gap between the dominant and dominated eigenvalues of the similarity matrix, which guarantees the asymptotic correct identification of the number of different roles.
View Article and Find Full Text PDFBackground: The recognition of illegal administration of synthetic corticosteroids in animal husbandry has been recently challenged by the case of prednisolone, whose occasional presence in the urine of bovines under strong stressful conditions was attributed to endogenous biosynthesis, not to exogenous administration. The study of the natural stress sources possibly inducing endogenous prednisolone production represents a stimulating investigation subject. The biochemical effects of transportation and slaughtering were verified in untreated cows by studying the possible occurrence of prednisolone and its metabolites in urine, liver and adrenal glands, and the cortisol/cortisone quantification.
View Article and Find Full Text PDFThe rapid development of the computational methods based on density functional theory, on the one hand, and of time-, energy-, and momentum-resolved spectroscopy, on the other hand, allows today an unprecedently detailed insight into the processes governing hot-electron relaxation dynamics, and, in particular, into the role of the electron-phonon coupling. Instead of focusing on the development of a particular method, theoretical or experimental, this review aims to treat the progress in the understanding of the electron-phonon coupling which can be gained from both, on the basis of recently obtained results. We start by defining several regimes of hot electron relaxation via electron-phonon coupling, with respect to the electron excitation energy.
View Article and Find Full Text PDFBismuth is one of the rare materials in which second sound has been experimentally observed. Our exact calculations of thermal transport with the Boltzmann equation predict the occurrence of this Poiseuille phonon flow between ≈1.5 and ≈3.
View Article and Find Full Text PDF