Neuropsychopharmacol Hung
December 2024
Background: Major depressive disorder (MDD) is a complex psychiatric condition significantly impacted by environmental stress and inflammation. Previous research suggests that stress-induced alterations in the blood-brain barrier (BBB) may allow pro-inflammatory cytokines like interleukin-6 (IL-6) to enter the brain, contributing to depression. Tumor necrosis factor-alpha (TNF-α) is another prominent cytokine implicated in depression, but its role in the context of BBB integrity and stress-mediated depression remains unclear.
View Article and Find Full Text PDFMounting evidence supports the key role of the disrupted integrity of the blood-brain barrier (BBB) in stress- and inflammation-associated depression. We assumed that variations in genes regulating the expression and coding proteins constructing and maintaining this barrier, along with those involved in inflammation, have a predisposing or protecting role in the development of depressive symptoms after experiencing severe stress. To prove this, genome-by-environment (GxE) interaction analyses were conducted on 6.
View Article and Find Full Text PDFMost current approaches to establish subgroups of depressed patients for precision medicine aim to rely on biomarkers that require highly specialized assessment. Our present aim was to stratify participants of the UK Biobank cohort based on three readily measurable common independent risk factors, and to investigate depression genomics in each group to discover common and separate biological etiology. Two-step cluster analysis was run separately in males (n = 149,879) and females (n = 174,572), with neuroticism (a tendency to experience negative emotions), body fat percentage, and years spent in education as input variables.
View Article and Find Full Text PDFPharmaceuticals (Basel)
February 2024
Differences in the pharmacological effects of (S)-ketamine and (R)-ketamine are at the focus of research. Clinical data and our rat studies confirmed the antidepressant effect of (S)- but not (R)-ketamine, with similar differences in quantitative electroencephalogram (EEG) and sleep effects. In contrast, studies mainly on mice showed some stronger, preferable effects of (R)-ketamine.
View Article and Find Full Text PDF