Introduction: Axial vascularization represents a mandatory requirement for clinically applied larger scale vascularized bone grafts. The aim of this study was to combine the arteriovenous (AV) loop model in the rat with a critically sized femoral bone defect and to successfully transplant axially vascularized bone constructs into the defect.
Materials And Methods: In Groups A and C, an AV loop together with a clinically approved hydroxyapatite and beta-tricalcium phosphate (HA/β-TCP) matrix, mesenchymal stem cells, and recombinant human bone morphogenetic protein 2 were implanted into a newly designed porous titanium chamber with an integrated osteosynthesis plate in the thighs of rats, whereas in Groups B and D, the same matrix composition without AV loop and, in Group E, only the HA/β-TCP matrix were implanted.
In this study, we analysed the effects of pure epidermal micrografts generated with an automated device in a standardised human wound model. Epidermal micrografts were harvested using an automated device. Micrografts were then transplanted onto split-skin donor sites.
View Article and Find Full Text PDFPlast Reconstr Surg Glob Open
April 2016
Cross-finger flaps still represent a viable option to reconstruct small- to medium-sized full-thickness finger defects but they are not commonly used if larger areas have to be covered. We present 2 cases showing a simple and pragmatic approach with homodigital double cross-finger flaps to reconstruct extensive volar finger soft-tissue defects. We observed very low donor-site morbidity and excellent functional and aesthetic outcomes.
View Article and Find Full Text PDFIn this report, we present a case of the use of a conjoined fabricated free anterolateral thigh (ALT)/tensor fascia latae (TFL) perforator flap for reconstruction of the lower extremity with intraoperative flap design using intraoperative indocyanine green (ICG) monitoring. The flap was used for reconstruction of a 16 cm × 28 cm sized defect of the lower leg in a 24-year-old man. The defect was caused by a third degree open fracture to the tibia.
View Article and Find Full Text PDFIntroduction: In this study the induction of bone formation in an axially vascularized bone matrix using mesenchymal stem cells (MSCs) and application of bone morphogenetic protein 2 (BMP2) was analyzed in the arteriovenous loop (AVL) model.
Materials And Methods: An AVL was created in the medial thigh of 42 rats and placed in a porous titanium chamber filled with a particulated porous hydroxyapatite and beta-tricalcium phosphate matrix and fibrin. In group A the fibrin was loaded with 5×10(6) DiI-stained fibrin gel-immobilized primary MSCs from syngenic Lewis rats, in group B the matrix was loaded with 60 μg/mL BMP2 and in group C both, BMP2 and MSCs were applied at implantation time point.