BMC Bioinformatics
January 2025
Background: Imaging-based spatial transcriptomics technologies allow us to explore spatial gene expression profiles at the cellular level. Cell type annotation of imaging-based spatial data is challenging due to the small gene panel, but it is a crucial step for downstream analyses. Many good reference-based cell type annotation tools have been developed for single-cell RNA sequencing and sequencing-based spatial transcriptomics data.
View Article and Find Full Text PDFThe MYST family histone acetyltransferase gene, KAT6B (MYST4, MORF, QKF) is mutated in two distinct human congenital disorders characterised by intellectual disability, facial dysmorphogenesis and skeletal abnormalities; Say-Barber-Biesecker-Young-Simpson variant of Ohdo syndrome and Genitopatellar syndrome. Despite its requirement in normal skeletal development, the cellular and transcriptional effects of KAT6B in skeletogenesis have not been thoroughly studied. Here, we show that germline deletion of the Kat6b gene in mice causes premature ossification in vivo, resulting in shortened craniofacial elements and increased bone density, as well as shortened tibias with an expanded pre-hypertrophic layer, as compared to wild type controls.
View Article and Find Full Text PDFHepatocytes are organized into distinct zonal subsets across the liver lobule, yet their contributions to liver homeostasis and regeneration remain controversial. Here, we developed multiple genetic lineage-tracing mouse models to systematically address this. We found that the liver lobule can be divided into two major zonal and molecular hepatocyte populations marked by Cyp2e1 or Gls2.
View Article and Find Full Text PDFHormone-receptor-positive (HR) luminal cells largely mediate the response to estrogen and progesterone during mammary gland morphogenesis. However, there remains a lack of consensus on the precise nature of the precursor cells that maintain this essential HR lineage. Here we refine the identification of HR progenitors and demonstrate their unique regenerative capacity compared to mature HR cells.
View Article and Find Full Text PDF