Publications by authors named "G B Rocklin"

Amino acid insertions and deletions (indels) are among the most common protein mutations and necessitate changes to a protein's backbone geometry. Examining how indels affect protein folding stability (and especially how indels can increase stability) can help reveal the role of backbone energetics on stability and introduce new protein engineering strategies. Tsuboyama et al.

View Article and Find Full Text PDF

Synthetic biology allows us to reuse, repurpose, and reconfigure biological systems to address society's most pressing challenges. Developing biotechnologies in this way requires integrating concepts across disciplines, posing challenges to educating students with diverse expertise. We created a framework for synthetic biology training that deconstructs biotechnologies across scales-molecular, circuit/network, cell/cell-free systems, biological communities, and societal-giving students a holistic toolkit to integrate cross-disciplinary concepts towards responsible innovation of successful biotechnologies.

View Article and Find Full Text PDF

The de novo design of miniprotein inhibitors has recently emerged as a new technology to create proteins that bind with high affinity to specific therapeutic targets. Their size, ease of expression, and apparent high stability makes them excellent candidates for a new class of protein drugs. However, beyond circular dichroism melts and hydrogen/deuterium exchange experiments, little is known about their dynamics, especially at the elevated temperatures they seemingly tolerate quite well.

View Article and Find Full Text PDF

Controlling the biodistribution of protein- and nanoparticle-based therapeutic formulations remains challenging. In vivo library selection is an effective method for identifying constructs that exhibit desired distribution behavior; library variants can be selected based on their ability to localize to the tissue or compartment of interest despite complex physiological challenges. Here, we describe further development of an in vivo library selection platform based on self-assembling protein nanoparticles encapsulating their own mRNA genomes (synthetic nucleocapsids or synNCs).

View Article and Find Full Text PDF

Advances in DNA sequencing and machine learning are providing insights into protein sequences and structures on an enormous scale. However, the energetics driving folding are invisible in these structures and remain largely unknown. The hidden thermodynamics of folding can drive disease, shape protein evolution and guide protein engineering, and new approaches are needed to reveal these thermodynamics for every sequence and structure.

View Article and Find Full Text PDF