Streams draining urban catchments ubiquitously undergo negative physical and ecosystem changes, recognized to be primarily driven by frequent stormwater runoff input. The common management intervention is rehabilitation of channel morphology. Despite engineering design intentions, ecohydraulic benefits of urban channel rehabilitation are largely unknown and likely limited.
View Article and Find Full Text PDFResearch and engineering efforts are establishing a vast number of stream restoration planning approaches, design testing frameworks, construction techniques, and performance evaluation methods. A primary question arises as to the lifespan of stream restoration features. This study develops a framework to identify relevant parameters, design criteria and survival thresholds for ten multidisciplinary restoration techniques: •Parameterize relevant features, notably, (1) bar and floodplain grading; (2) berm setback; (3) vegetation plantings; (4) riprap placement; (5) sediment replenishment; (6) side cavities; (7) side channel and anabranches; (8) streambed reshaping; (9) structure removal; and (10) placement of wood in the shape of engineered logjams and rootstocks.
View Article and Find Full Text PDFThe potential for catchment-scale stormwater control measures (SCMs) to mitigate the impact of stormwater runoff issues and excess stormwater volume is increasingly recognised. There is, however, limited understanding about their potential in reducing in-channel disturbance and improving hydraulic conditions for stream ecosystem benefits. This study investigates the benefits that SCM application in a catchment have on in-stream hydraulics.
View Article and Find Full Text PDFAnthropogenic, eco-morphological degradation of lotic waters necessitates laws, directives, and voluntary actions involving stream restoration and habitat enhancement. Research and engineering efforts are establishing a vast number of stream restoration planning approaches, design testing frameworks, construction techniques, and performance evaluation methods. As the practice of restoration scales up from an individual action at a single site to sequences of actions at many sites in a long river segment, a primary question arises as to the lifespan of such a sequence.
View Article and Find Full Text PDFIncreased public health risk caused by pathogen contamination in streams is a serious issue, and mitigating the risk requires improvement in existing microbial monitoring of streams. To improve understanding of microbial contamination in streams, we monitored in stream water columns and streambed sediment. Two distinct streams and their subwatersheds were studied: (i) a mountain stream (Merced River, California), which represents pristine and wild conditions, and (ii) an agricultural stream (Squaw Creek, Iowa), which represents an agricultural setting (i.
View Article and Find Full Text PDF