Comput Struct Biotechnol J
December 2024
Background And Aim: Visual data from images is essential for many medical diagnoses. This study evaluates the performance of multimodal Large Language Models (LLMs) in integrating textual and visual information for diagnostic purposes.
Methods: We tested GPT-4o and Claude Sonnet 3.
Achieving adequate enteral nutrition among mechanically ventilated patients is challenging, yet critical. We developed NutriSighT, a transformer model using learnable positional coding to predict which patients would achieve hypocaloric nutrition between days 3-7 of mechanical ventilation. Using retrospective data from two large ICU databases (3,284 patients from AmsterdamUMCdb - development set, and 6,456 from MIMIC-IV - external validation set), we included adult patients intubated for at least 72 hours.
View Article and Find Full Text PDFBackground And Aims: Wearable devices capture physiological signals non-invasively and passively. Many of these parameters have been linked to inflammatory bowel disease (IBD) activity. We evaluated the associative ability of several physiological metrics with IBD flares and how they change before the development of flare.
View Article and Find Full Text PDFBackground: Infant alertness and neurologic changes can reflect life-threatening pathology but are assessed by physical exam, which can be intermittent and subjective. Reliable, continuous methods are needed. We hypothesized that our computer vision method to track movement, pose artificial intelligence (AI), could predict neurologic changes in the neonatal intensive care unit (NICU).
View Article and Find Full Text PDF