We utilize real-time time-dependent density functional theory and Ehrenfest dynamics scheme to investigate excited-state nonadiabatic dynamics of ligand dissociation of cobalt tricarbonyl nitrosyl, Co(CO)NO, which is a precursor used for cobalt growth in advanced technologies, where the precursor's reaction is enhanced by electronic excitation. Based on the first-principles calculations, we demonstrate two dissociation pathways of the NO ligand on the precursor. Detailed electronic structures are further analyzed to provide an insight into dynamics following the electronic excitations.
View Article and Find Full Text PDFReliable and robust convergence to the electronic ground state within density functional theory (DFT) Kohn-Sham (KS) calculations remains a thorny issue in many systems of interest. In such cases, charge sloshing can delay or completely hinder the convergence. Here, we use an approach based on transforming the time-dependent DFT equations to imaginary time, followed by imaginary-time evolution, as a reliable alternative to the self-consistent field (SCF) procedure for determining the KS ground state.
View Article and Find Full Text PDFBand alignment between two materials is of fundamental importance for a multitude of applications. However, density functional theory (DFT) either underestimates the bandgap - as is the case with the local density approximation (LDA) or generalized gradient approximation (GGA) - or is highly computationally demanding, as is the case with hybrid-functional methods. The latter can become prohibitive in electronic-structure calculations of supercells which describe quantum wells.
View Article and Find Full Text PDFWe present a new paradigm for understanding optical absorption and hot electron dynamics experiments in graphene. Our analysis pivots on assigning proper importance to phonon-assisted indirect processes and bleaching of direct processes. We show indirect processes figure in the excess absorption in the UV region.
View Article and Find Full Text PDFWe present a computational tool, eReaxFF, for simulating explicit electrons within the framework of the standard ReaxFF reactive force field method. We treat electrons explicitly in a pseudoclassical manner that enables simulation several orders of magnitude faster than quantum chemistry (QC) methods, while retaining the ReaxFF transferability. We delineate here the fundamental concepts of the eReaxFF method and the integration of the Atom-condensed Kohn-Sham DFT approximated to second order (ACKS2) charge calculation scheme into the eReaxFF.
View Article and Find Full Text PDF