The widespread production and use of plastics with poor recycling practices have resulted in higher discharge of plastic waste into the aquatic systems. Nanoplastics (NPLs) resulting from the fragmentation of microplastics, are considered as the most hazardous fraction. Adsorption to mineral surfaces is considered as one of the most important processes controlling the fate and transport of nanomaterials both in the natural environment and conventional filtration systems.
View Article and Find Full Text PDFObesity is associated with chronic inflammation and metabolic complications, including insulin resistance (IR). Immune cells drive inflammation through the rewiring of intracellular metabolism. However, the impact of obesity-related IR on the metabolism and functionality of circulating immune cells, like monocytes, remains poorly understood.
View Article and Find Full Text PDFBackground: Body composition and body fat distribution are important predictors of cardiometabolic diseases. The etiology of cardiometabolic diseases is heterogenous, and partly driven by inter-individual differences in tissue-specific insulin sensitivity.
Objectives: To investigate (1) the associations between body composition and whole-body, liver and muscle insulin sensitivity, and (2) changes in body composition and insulin sensitivity and their relationship after a 12-week isocaloric diet high in mono-unsaturated fatty acids (HMUFA) or a low-fat, high-protein, high-fiber (LFHP) diet.
Information about the influence of surface charges on nanoplastics (NPLs) transport in porous media, the influence of NPL concentrations on porous media retention capacities, and changes in porous media adsorption capacities in the presence of natural water components are still scarce. In this study, laboratory column experiments are conducted to investigate the transport behavior of positively charged amidine polystyrene (PS) latex NPLs and negatively charged sulfate PS latex NPLs in quartz sand columns saturated with ultrapure water and Geneva Lake water, respectively. Results obtained for ultrapure water show that amidine PS latex NPLs have more affinity for negatively charged sand surfaces than sulfate PS latex NPLs because of the presence of attractive electrical forces.
View Article and Find Full Text PDFThe efficiency of sand filtration was investigated in terms of the behavior of the nanoplastics (NPLs) with different surface functionalities. The initial condition concentrations of NPLs were varied, and their effects on retention and transport were investigated under a constant flow rate in saturated porous media. The behavior of NPLs in this porous system was discussed by considering Z- average size and zeta (ζ) potential measurements of each effluent.
View Article and Find Full Text PDF