Publications by authors named "G B Foscolos"

Background: Intrigued by the fact that aminoadamantane derivatives, bearing the active 1,2-ethylenediamine moiety, are promising antitubercular agents, we report herein the synthesis and the antitubercular evaluation of N,N'-substituded-4,4'-[adamantane-2,2-diyl]bis(phe-noxyalkylamines) 1a-g, N,N'-substituded-4,4'-[adamantane-1,3-diyl]bis(phenoxyalkylamines) 2a-f, N,N'- substituded-[4-(1-adamantyl)phenoxy]alkylamines 3a-d and N,N'-substituded-[4-(2-adamantyl)- phenoxy]alkylamines 4a,b.

Method: A substituted diarylmethane moiety was introduced on the adamantane skeleton of the new derivatives. The synthesis of the above compounds involved the nucleophilic attack of the corresponding phenoxide, to the appropriate aminoalkylchloride hydrochloride under heating.

View Article and Find Full Text PDF

The synthesis of the adamantane phenylalkylamines 2a-d, 3a-c, and 4a-e is described. These compounds exhibited significant antiproliferative activity, in vitro, against eight cancer cell lines tested. The σ(1), σ(2), and sodium channel binding affinities of compounds 2a, 3a, 4a, and 4c-e were investigated.

View Article and Find Full Text PDF

The synthesis of 4-(1-adamantyl)-4,4-diarylbutylamines 1, 5-(1-adamantyl)-5,5-diarylpentylamines 2 and 6-(1-adamantyl)-6,6-diarylhexylamines 3 is described and the σ1, σ2-receptors and sodium channels binding affinity of compounds 1 were investigated. The in vitro activity of compounds 1, 2 and 3 against main cancer cell lines is significant. One of the most active analogs, 1a, had an interesting in vivo anticancer profile against the ovarian cancer cell line IGROV-1, which was associated with an anagelsic activity against the neuropathic pain induced by the main anticancer drugs.

View Article and Find Full Text PDF

The synthesis of N-{4-[a-(1-adamantyl)benzyl]phenyl}piperazines 2a-e is described. The in vitro antiproliferative activity of most compounds against main cancer cell lines is significant. The σ(1), σ(2)-receptors and sodium channels binding affinity of compounds 2 were investigated.

View Article and Find Full Text PDF

Spiro[aziridine-2,2'-adamantanes] 1 and 2, spiro[azetidine-2,2'-adamantanes] 3 and 5, spiro[azetidine-3,2'-adamantane] 13, spiro[piperidine-4,2'-adamantanes] 25 and 27, and spiro barbituric analog 18 were synthesized and tested for their anti-influenza A virus properties and for trypanocidal activity. The effect of ring size on potency was investigated. Piperidine 25 showed significant anti-influenza A virus activity, being 12-fold more active than amantadine, about 2-fold more active than rimantadine, and 54-fold more potent than ribavirin.

View Article and Find Full Text PDF