Background: The renewed interest in BGO scintillators for TOF-PET is driven by the improved Cherenkov photon detection with new blue-sensitive SiPMs. However, the slower scintillation light from BGO causes significant time walk with leading edge discrimination (LED), which degrades the coincidence time resolution (CTR). To address this, a time walk correction (TWC) can be done by using the rise time measured with a second threshold.
View Article and Find Full Text PDFPositron emission tomography (PET) is a widely utilized medical imaging modality that uses positron-emitting radiotracers to visualize biochemical processes in a living body. The spatiotemporal distribution of a radiotracer is estimated by detecting the coincidence photon pairs generated through positron annihilations. In human tissue, about 40% of the positrons form positroniums prior to the annihilation.
View Article and Find Full Text PDFIEEE Trans Radiat Plasma Med Sci
January 2024
Proton range verification (PRV) in proton therapy by means of prompt-gamma detection is a promising but challenging approach. High count rates, energies ranging between 1 MeV and 7 MeV, and a strong background complicate the detection of such particles. In this work, the Cherenkov light generated by prompt-gammas in the pure Cherenkov emitters TlBr, TlCl and PbF was studied.
View Article and Find Full Text PDFIEEE Trans Radiat Plasma Med Sci
March 2023
Cherenkov light can improve the timing resolution of Positron Emission Tomography (PET) radiation detectors, thanks to its prompt emission. Coincidence time resolutions (CTR) of ~30 ps were recently reported when using 3.2 mm-thick Cherenkov emitters.
View Article and Find Full Text PDF