Plants employ a diversity of reproductive safeguarding strategies to circumvent the challenge of pollen limitation. Focusing on southern African Lachenalia (Asparagaceae: Scilloideae), we test the hypothesis that the evolution of reproductive safeguarding traits (self-compatibility, autonomous selfing, bird pollination and clonal propagation) is favoured in species occupying conditions of low insect abundance imposed by critically infertile fynbos heathland vegetation and by flowering outside the austral spring insect abundance peak. We trace the evolution of these traits and selective regimes on a dated, multi-locus phylogeny of Lachenalia and assess their evolutionary associations using ordinary and phylogenetic regression.
View Article and Find Full Text PDFBackground And Aims: In many systems, postfire vegetation recovery is characterized by temporal changes in plant species composition and richness. We attribute this to changes in resource availability with time since fire, with the magnitude of species turnover determined by the degree of resource limitation. Here, we test the hypothesis that postfire species turnover in South African fynbos heathland is powered by fire-modulated changes in nutrient availability, with the magnitude of turnover in nutrient-constrained fynbos being greater than in fertile renosterveld shrubland.
View Article and Find Full Text PDFSpecies delimitation in the genomic era has focused predominantly on the application of multiple analytical methodologies to a single massive parallel sequencing (MPS) data set, rather than leveraging the unique but complementary insights provided by different classes of MPS data. In this study, we demonstrate how the use of two independent MPS data sets, a sequence capture data set and a single-nucleotide polymorphism (SNP) data set generated via genotyping-by-sequencing, enables the resolution of species in three complexes belonging to the grass genus Ehrharta, whose strong population structure and subtle morphological variation limit the effectiveness of traditional species delimitation approaches. Sequence capture data are used to construct a comprehensive phylogenetic tree of Ehrharta and to resolve population relationships within the focal clades, while SNP data are used to detect patterns of gene pool sharing across populations, using a novel approach that visualizes multiple values of K.
View Article and Find Full Text PDF