Publications by authors named "G Andreottola"

This study introduces a novel approach to aerobic granular sludge technology that minimizes the start-up time and guarantees the formation of stable granules. This is achieved by seeding the reactor with a cationic polymer without using inoculated sludge. Three cationic polymers (Hydrofloc C4400SA, C8896, and polyelectrolyte emulsion) were tested to determine the most appropriate polymer for aerobic granular sludge (AGS) startup based on the optimal dose and formation of aerobic granules.

View Article and Find Full Text PDF

The analysis of micro- and nanoplastics (MNPs) in the environment is a critical objective due to their ubiquitous presence in natural habitats, as well as their occurrence in various food, beverage, and organism matrices. MNPs pose significant concerns due to their direct toxicological effects and their potential to serve as carriers for hazardous organic/inorganic contaminants and pathogens, thereby posing risks to both human health and ecosystem integrity. Understanding the fate of MNPs within wastewater treatment plants (WWTPs) holds paramount importance, as these facilities can be significant sources of MNP emissions.

View Article and Find Full Text PDF

Salinity of nitrate-laden wastewaters, such as those produced by metal industries, tanneries, and wet flue gas cleaning systems may affect their treatment by denitrification. Salt inhibition of denitrification has been reported, while impacts of individual ions remain poorly understood whilst being relevant for wastewaters where often the concentration of a single ion rather than the salts varies. The aim of this study was to determine the inhibition by inorganic ions (Na, Cl, SO and K) commonly present in saline wastewaters on denitrification and reveal its potential for the treatment of such waste streams, like those produced by NO-SO removal scrubbers.

View Article and Find Full Text PDF

In this study, two scenarios of a municipal wastewater treatment plant (WWTP) are presented, which include the integration of the hydrothermal carbonization (HTC) process into the sludge line as a post-treatment of the anaerobic digestion (AD) process. The objective of the simulation is to investigate the performances of AD + HTC treatment to reduce sludge production and improve nutrient and energy recovery. For this purpose, the scheme of an under-construction WWTP was considered, named Trento 3 (Trento, Italy) and with a treatment capacity of 300,000 PE.

View Article and Find Full Text PDF

This study aimed at modelling the performance of a novel MBBR configuration, named A/O-MBBR, comprised of a pre-anoxic reactor, with an HRT of 4.5 h, coupled with an intermittent anoxic/aerobic MBBR (HRT = 6.8 h).

View Article and Find Full Text PDF