Objectives: Laser-based endoscopic procedures present special challenges to deliver energy for ablation or coagulation of target tissues. When optical fiber-target quasi-contact (< 0.5 mm distance) cannot be maintained or is undesirable, the creation of intervening vapor bubbles and channels provide for the necessary transmission of laser energy to the target.
View Article and Find Full Text PDFThe super-pulsed thulium fiber laser (SP TFL) is a new alternative to high-power holmium laser for intracorporeal lithotripsy. The SP TFL has shown advantages in dusting regimes, but benefits in fragmentation regimes are less understood. The second-generation SP TFL introduces an advanced fragmentation pulse (AFP) sequence to maximize SP TFL's efficiency in fragmentation.
View Article and Find Full Text PDFBackground And Objectives: The use of ablative fractional lasers to enhance the delivery of topical drugs through the skin is known as laser-assisted drug delivery. Here, we compare a novel 3050/3200 nm difference frequency generation (DFG) fiber laser (spot size: 40 µm) to a commercially used CO laser (spot size: 120 µm). The objective is to determine whether differences in spot size and coagulation zone (CZ) thickness influence drug uptake.
View Article and Find Full Text PDFUnlabelled: BACKGROUND AND OBJECTIVES: Approximately 50,000 emergency department visits per year due to carbon monoxide (CO) poisoning occur in the United States alone. Tissue hypoxia can occur at very low CO concentration exposures because CO binds with a 250-fold higher affinity than oxygen to hemoglobin. The most effective therapy is 100% hyperbaric oxygen (HBO) respiration.
View Article and Find Full Text PDFBackground And Objectives: Mid-infrared (IR) ablative fractional laser treatments are highly efficacious for improving the appearance of a variety of dermatological conditions such as photo-aged skin. However, articulated arms are necessary to transmit the mid-IR light to the skin, which restricts practicality and clinical use. Here, we have assessed and characterized a novel fiber laser-pumped difference frequency generation (DFG) system that generates ablative fractional lesions and compared it to clinically and commercially available thulium fiber, Erbium:YAG (Er:YAG), and CO lasers.
View Article and Find Full Text PDF