Publications by authors named "G Alter"

Some individuals, even when heavily exposed to an infectious tuberculosis patient, do not develop a specific T-cell response as measured by interferon-gamma release assay (IGRA). This could be explained by an IFN-γ-independent adaptive immune response, or an effective innate host response clearing Mycobacterium tuberculosis (Mtb) without adaptive immunity. In heavily exposed Indonesian tuberculosis household contacts (n = 1347), a persistently IGRA negative status was associated with presence of a BCG scar, and - especially among those with a BCG scar - with altered innate immune cells dynamics, higher heterologous (Escherichia coli-induced) proinflammatory cytokine production, and higher inflammatory proteins in the IGRA mitogen tube.

View Article and Find Full Text PDF

Intradermal Bacillus Calmette-Guérin (BCG) is the most widely administered vaccine, but it does not sufficiently protect adults against pulmonary tuberculosis. Recent studies in nonhuman primates show that intravenous BCG administration offers superior protection against (). We used single-cell analysis of bronchoalveolar lavage cells from rhesus macaques vaccinated via different routes and doses of BCG to identify alterations in the immune ecosystem in the airway following vaccination.

View Article and Find Full Text PDF

Altering Bacille Calmette-Guérin (BCG) immunization from low-dose intradermal (i.d.) to high-dose intravenous (i.

View Article and Find Full Text PDF

Analysis of multi-modal datasets can identify multi-scale interactions underlying biological systems, but can be beset by spurious connections due to indirect impacts propagating through an unmapped biological network. For example, studies in macaques have shown that BCG vaccination by an intravenous route protects against tuberculosis, correlating with changes across various immune data modes. To eliminate spurious correlations and identify critical immune interactions in a public multi-modal dataset (systems serology, cytokines, cytometry) of vaccinated macaques, we applied Markov Fields (MF), a data-driven approach that explains vaccine efficacy and immune correlations via multivariate network paths, without requiring large numbers of samples (i.

View Article and Find Full Text PDF

Analysis of multi-modal datasets can identify multi-scale interactions underlying biological systems but can be beset by spurious connections due to indirect impacts propagating through an unmapped biological network. For example, studies in macaques have shown that Bacillus Calmette-Guerin (BCG) vaccination by an intravenous route protects against tuberculosis, correlating with changes across various immune data modes. To eliminate spurious correlations and identify critical immune interactions in a public multi-modal dataset (systems serology, cytokines, and cytometry) of vaccinated macaques, we applied Markov fields (MFs), a data-driven approach that explains vaccine efficacy and immune correlations via multivariate network paths, without requiring large numbers of samples (i.

View Article and Find Full Text PDF