The rapidly advancing field of nanotechnology is driving the development of precise sensing methods at the nanoscale, with solid-state nanopores emerging as promising tools for biomolecular sensing. This study investigates the increased sensitivity of solid-state nanopores achieved by integrating DNA origami structures, leading to the improved analysis of protein translocations. Using holo human serum transferrin (holo-hSTf) as a model protein, we compared hybrid nanopores incorporating DNA origami with open solid-state nanopores.
View Article and Find Full Text PDFBioengineering (Basel)
September 2024
Dipole localization, a fundamental challenge in electromagnetic source imaging, inherently constitutes an optimization problem aimed at solving the inverse problem of electric current source estimation within the human brain. The accuracy of dipole localization algorithms is contingent upon the complexity of the forward model, often referred to as the head model, and the signal-to-noise ratio (SNR) of measurements. In scenarios characterized by low SNR, often corresponding to deep-seated sources, existing optimization techniques struggle to converge to global minima, thereby leading to the localization of dipoles at erroneous positions, far from their true locations.
View Article and Find Full Text PDFBackground: Pulse oximeters work within the red-infrared wavelengths. Therefore, these oximeters produce erratic results in dark-skinned subjects and in subjects with cold extremities. Pulse oximetry is routinely performed in patients with fever; however, an elevation in body temperature decreases the affinity of hemoglobin for oxygen, causing a drop in oxygen saturation or oxyhemoglobin concentrations.
View Article and Find Full Text PDFBimodal optical-electrical data generated when a 20 nm diameter silica (SiO) nanoparticle was trapped by a plasmonic nanopore sensor were simulated using Multiphysics COMSOL and compared with sensor measurements for closely matching experimental parameters. The nanosensor, employed self-induced back action (SIBA) to optically trap nanoparticles in the center of a double nanohole (DNH) structure on top a solid-state nanopores (ssNP). This SIBA actuated nanopore electrophoresis (SANE) sensor enables simultaneous capture of optical and electrical data generated by several underlying forces acting on the trapped SiO nanoparticle: plasmonic optical trapping, electroosmosis, electrophoresis, viscous drag, and heat conduction forces.
View Article and Find Full Text PDFBackground: Human hemoglobin is a tetrameric metalloporphyrin. The heme part contains iron radicle and porphyrin. The globin part consists of two pairs of amino-acid chains.
View Article and Find Full Text PDF