Publications by authors named "G A Posthuma-Trumpie"

Article Synopsis
  • The study shows that carbon nanoparticles (CNPs) can effectively label microarrays for detecting virulence factors of Shiga toxin-producing E. coli (STEC).
  • CNPs were utilized in nucleic acid microarray immunoassays (NAMIAs) to analyze specific STEC genes and optimize detection limits through statistical design.
  • The results demonstrated high sensitivity, specificity, and perfect agreement with traditional q-PCR methods, establishing the reliability and efficiency of CNPs in genetic screening.
View Article and Find Full Text PDF

Carbon nanoparticles (CNPs) labeled with reporter molecules can serve as signaling labels in rapid diagnostic assays as an alternative to gold, colored latex, silica, quantum dots, or up-converting phosphor nanoparticles. Detailed here is the preparation of biomolecule-labeled CNPs and examples of their use as a versatile label. CNPs can be loaded with a range of biomolecules, such as DNA, antibodies, and proteins (e.

View Article and Find Full Text PDF

The use of carbon nanoparticles is shown for the detection and identification of different Shiga toxin-producing Escherichia coli virulence factors (vt1, vt2, eae and ehxA) and a 16S control (specific for E. coli) based on the use of lateral flow strips (nucleic acid lateral flow immunoassay, NALFIA). Prior to the detection with NALFIA, a rapid amplification method with tagged primers was applied.

View Article and Find Full Text PDF

PNAs (peptide nucleic acids) have been immobilized onto surfaces in a fast, accurate way by employing reactive microcontact printing. Surfaces have been first modified with aldehyde groups to react with the amino end of the synthesized PNAs. When patterning fluorescein-labeled PNAs by reactive microcontact printing using oxygen-oxidized polydimethylsiloxane stamps, homogeneous arrays were fabricated and characterized using optical methods.

View Article and Find Full Text PDF

In medicine and biotechnology, close monitoring of molecular processes might assist to optimise therapeutic interventions and production of biochemicals, respectively. Here, we summarize the current status of two automatic and continuous sampling technologies, microdialysis and microfiltration, which facilitate both in vivo and in vitro monitoring of nearly any analyte, because they can be combined easily with many analytical techniques. Conventional microdialysis and microfiltration, which require collecting relatively large samples, are however often impractical and semi-quantitative; hence, we focus on ultraslow sampling to circumvent such limitations.

View Article and Find Full Text PDF