Publications by authors named "G A Peltz"

Due to the limitations of available in vitro systems and animal models, we lack a detailed understanding of the pathogenetic mechanisms and have minimal treatment options for liver fibrosis. Therefore, we engineered a live cell imaging system that assesses fibrosis in a human multi-lineage hepatic organoid in a microwell (i.e.

View Article and Find Full Text PDF

The laboratory mouse has been the premier model organism for biomedical research owing to the availability of multiple well-characterized inbred strains, its mammalian physiology and its homozygous genome, and because experiments can be performed under conditions that control environmental variables. Moreover, its genome can be genetically modified to assess the impact of allelic variation on phenotype. Mouse models have been used to discover or test many therapies that are commonly used today.

View Article and Find Full Text PDF

Rationale: Transgenerational effects of preconception morphine exposure in female rats have been reported which suggest that epigenetic modifications triggered by female opioid exposure, even when that exposure ends several weeks prior to pregnancy, has significant ramifications for their future offspring.

Objective: The current study compares two mouse strains with well-established genetic variation in their response to mu opioid receptor agonists, C57BL/6J (BL6) and 129S1/svlmJ (129) to determine whether genetic background modifies the impact of preconception opioid exposure.

Methods: Adolescent females from both strains were injected daily with morphine for a total of 10 days using an increasing dosing regimen with controls receiving saline.

View Article and Find Full Text PDF

Since organoids were developed 15 years ago, they are now in their adolescence as a research tool. The ability to generate 'tissue in a dish' has created enormous opportunities for biomedical research. We examine the contributions that hepatic organoids have made to three areas of liver research: as a source of cells and tissue for basic research, for drug discovery and drug safety testing, and for understanding disease pathobiology.

View Article and Find Full Text PDF
Article Synopsis
  • Research on various inbred mouse strains has advanced our understanding of genetic variants linked to diseases, with a vast array of traits cataloged for public access.* -
  • New mouse models and enhanced genomic data sets help improve trait-variant analysis, although issues like sparse genotypes and data incompatibility remain obstacles.* -
  • The development of GenomeMUSter, a comprehensive data resource, addresses these issues by offering extensive single-nucleotide variant data, facilitating cross-species comparisons and broadening the applications in genetic research related to health and disease.*
View Article and Find Full Text PDF