Publications by authors named "G A Pelletier"

Anthropogenic carbon dioxide emissions have been increasing rapidly in recent years, driving pH and oxygen levels to record low concentrations in the oceans. Eastern boundary upwelling systems such as the California Current System (CCS) experience exacerbated ocean acidification and hypoxia (OAH) due to the physical and chemical properties of the transported deeper waters. Research efforts have significantly increased in recent years to investigate the deleterious effects of climate change on marine species, but have not focused on the impacts of simultaneous OAH stressor exposure.

View Article and Find Full Text PDF

Comprehensive understanding of environmental multiple stressors on calcification in marine calcifiers remains an important topic of study, especially under ocean global change associated with multiple stressors. We explore the impact of multiple stressor on pteropod calcification in the southern Salish Sea (Washington, U.S.

View Article and Find Full Text PDF

Forests face an escalating threat from the increasing frequency of extreme drought events driven by climate change. To address this challenge, it is crucial to understand how widely distributed species of economic or ecological importance may respond to drought stress. In this study, we examined the transcriptome of white spruce (Picea glauca (Moench) Voss) to identify key genes and metabolic pathways involved in the species' response to water stress.

View Article and Find Full Text PDF

Cardiovascular diseases remain the leading cause of morbidity and mortality globally, posing significant challenges to public health. The rapid evolution of artificial intelligence (AI), particularly with large language models such as ChatGPT, has introduced transformative possibilities in cardiovascular medicine. This review examines ChatGPT's broad applications in enhancing clinical decision-making-covering symptom analysis, risk assessment, and differential diagnosis; advancing medical education for both healthcare professionals and patients; and supporting research and academic communication.

View Article and Find Full Text PDF

Selecting the optimal monitoring points in a water distribution network is challenging due to the complex spatiotemporal variability of water quality degradation. The lack of a standardized methodology for monitoring point selection forces operators to rely on general recommendations, historical data and professional experience, which can mask water quality problems and increase the risk to consumers. This study proposes a new methodology to optimize the selection of monitoring points in distribution networks.

View Article and Find Full Text PDF