Electrophysiological studies indicate that cat visual cortical critical period neuronal plasticity peaks around 5 weeks and largely disappears by 20 weeks. Dark rearing slows this time course. Normal cats are more plastic than dark-reared cats at 5 weeks, but the opposite is true at 20 weeks.
View Article and Find Full Text PDFBackground: In cat visual cortex, critical period neuronal plasticity is minimal until approximately 3 postnatal weeks, peaks at 5 weeks, gradually declines to low levels at 20 weeks, and disappears by 1 year of age. Dark rearing slows the entire time course of this critical period, such that at 5 weeks of age, normal cats are more plastic than dark reared cats, whereas at 20 weeks, dark reared cats are more plastic. Thus, a stringent criterion for identifying genes that are important for plasticity in visual cortex is that they show differences in expression between normal and dark reared that are of opposite direction in young versus older animals.
View Article and Find Full Text PDFThis study describes postnatal critical period changes in cellular and laminar expression of Dab-1, a gene shown to play a role in controlling neuronal positioning during embryonic brain development, in cat visual cortex and the effects of dark rearing (DR). At 1week, there is dense cellular staining which is uniform across cortical layers and very light neuropil staining. At the peak of the critical period (5weeks), dense cell staining is largely restricted to large pyramidal cells of deep layer III and layer V, there is faint cell body staining throughout all cortical layers, neuropil staining is markedly increased and uniform in layers III to VI.
View Article and Find Full Text PDFSubfertility and severe pelvic pains are symptoms associated with endometriosis (ENDO), a common condition among women that is characterized by the growth of the uterine endometrium on the surface of organs within the pelvic region and abdominal cavity. The contribution of the CNS to symptoms associated with ENDO is not known. In the present study, the preoptic area (POA) of the hypothalamus was investigated, as this region of the forebrain is known to play an important role in the neuroendocrine control of the reproductive cycle, mating behavior, and antinociception.
View Article and Find Full Text PDF