Lipid nanoparticles formed with copolymers are a new and increasingly powerful tool for studying membrane proteins, but the extent to which these systems affect the physical properties of the membrane is not completely understood. This is critical to understanding the caveats of these new systems and screening for structural and functional artifacts that might be caused in the membrane proteins they are used to study. To better understand these potential effects, the fluid properties of dipalmitoylphosphatidylcholine lipid bilayers were examined by electron paramagnetic resonance (EPR) spectroscopy with spin-labeled reporter lipids in either liposomes or incorporated into nanoparticles with the copolymers diisobutylene-maleic acid or styrene maleic acid.
View Article and Find Full Text PDFMembers of the KCNE family are accessory subunits that modulate voltage-gated potassium channels. One member, KCNE4, has been shown to inhibit the potassium ion current in these channels. However, little is known about the structure, dynamics, and mode of inhibition of KCNE4, likely due to challenges in overexpressing and purifying the protein.
View Article and Find Full Text PDFNative lipid bilayer mimetics, including those that use amphiphilic polymers, are important for the effective study of membrane-bound peptides and proteins. Copolymers of vinyl ether monomers and maleic anhydride were developed with controlled molecular weights and hydrophobicity through reversible addition-fragmentation chain-transfer polymerization. After polymerization, the maleic anhydride units can be hydrolyzed, giving dicarboxylates.
View Article and Find Full Text PDFPinholin S68 is a viral integral membrane protein whose function is to form nanoscopic "pinholes" in bacterial cell membranes to induce cell lysis as part of the viral replication cycle. Pinholin can transition from an inactive to an active conformation by exposing a transmembrane domain (TMD1) to the extracellular fluid. Upon activation, several copies of the protein assemble via interactions among a second transmembrane domain (TMD2) to form a single pore, thus hastening cell lysis and viral escape.
View Article and Find Full Text PDFBiochim Biophys Acta Biomembr
October 2024
KCNQ1, also known as Kv7.1, is a voltage gated potassium channel that associates with the KCNE protein family. Mutations in this protein has been found to cause a variety of diseases including Long QT syndrome, a type of cardiac arrhythmia where the QT interval observed on an electrocardiogram is longer than normal.
View Article and Find Full Text PDF