Unlabelled: A biosensor based on field-effect transistors on silicon-on-insulator structures (SOI-biosensor) is a high-potential device for detection of biological molecules, for instance, such as troponin I; the biosensor allows conducting label-free real-time analysis. is the development of SOI-biosensor design for detection of acute myocardial infarction marker - troponin I. A notable feature of this design was the integration of two grounding electrodes directly onto the biosensor surface, which effectively nullified the static potential of the liquid sample and minimized physical breakdowns of biosensor elements.
View Article and Find Full Text PDFThe mouse paramyxovirus Sendai, which is capable of limited replication in human bronchial epithelial cells without causing disease, is well suited for the development of vector-based intranasal vaccines against respiratory infections, including SARS-CoV-2. Using the Moscow strain of the Sendai virus, we developed a vaccine construct, Sen-Sdelta(M), which expresses the full-length spike (S) protein of the SARS-CoV-2 delta variant. A single intranasal delivery of Sen-Sdelta(M) to Syrian hamsters and BALB/c mice induced high titers of virus-neutralizing antibodies specific to the SARS-CoV-2 delta variant.
View Article and Find Full Text PDFBiochemistry (Mosc)
September 2023
Antibodies against the receptor-binding domain of the SARS-CoV-2 spike protein (RBD S-protein) contribute significantly to the humoral immune response during coronavirus infection (COVID-19) and after vaccination. The main focus of the studies of the RBD epitope composition is usually concentrated on the epitopes recognized by the virus-neutralizing antibodies. The role of antibodies that bind to RBD but do not neutralize SARS-CoV-2 remains unclear.
View Article and Find Full Text PDFAntibody-dependent enhancement (ADE) has been shown previously for SARS-CoV-1, MERS-CoV, and SARS-CoV-2 infection in vitro. In this study, the first monoclonal antibody (mAb) that causes ADE in a SARS-CoV-2 in vivo model was identified. mAb RS2 against the SARS-CoV-2 S-protein was developed using hybridoma technology.
View Article and Find Full Text PDFIntroduction: Intranasal vaccination using live vector vaccines based on non-pathogenic or slightly pathogenic viruses is the one of the most convenient, safe and effective ways to prevent respiratory infections, including COVID-19. Sendai virus is the best suited for this purpose, since it is respiratory virus and is capable of limited replication in human bronchial epithelial cells without causing disease. The aim of the work is to design and study the vaccine properties of recombinant Sendai virus, Moscow strain, expressing secreted receptor-binding domain of SARS-CoV-2 Delta strain S protein (RBDdelta) during a single intranasal immunization.
View Article and Find Full Text PDF