Publications by authors named "G A Krasnikov"

We study the transport properties of multi-terminal Hermitian structures within the non-equilibrium Green's function formalism in a tight-binding approximation. We show that non-Hermitian Hamiltonians naturally appear in the description of coherent tunneling and are indispensable for the derivation of a general compact expression for the lead-to-lead transmission coefficients of an arbitrary multi-terminal system. This expression can be easily analyzed, and a robust set of conditions for finding zero and unity transmissions (even in the presence of extra electrodes) can be formulated.

View Article and Find Full Text PDF

The influence of deep controlled respiration on cardiovascular oscillations in 13 healthy young volunteers was studied. A measurement system comprising electrocardiography, laser Doppler flowmetry (LDF) and photoplethysmography (PPG) was used to estimate heart rate variability (HRV), tissue blood volume and skin blood perfusion at spontaneous respiration and during three tests at controlled conditions. In the latter case, respiration was controlled in both rate (0.

View Article and Find Full Text PDF

The development of highly integrated electrophysiological devices working in direct contact with living neuron tissue opens new exciting prospects in the fields of neurophysiology and medicine, but imposes tight requirements on the power dissipated by electronics. preprocessing of neuronal signals can substantially decrease the power dissipated by external data interfaces, and the addition of embedded non-volatile memory would significantly improve the performance of a co-processor in real-time processing of the incoming information stream from the neuron tissue. Here, we evaluate the parameters of TaO -based resistive switching (RS) memory devices produced by magnetron sputtering technique and integrated with the 180-nm CMOS field-effect transistors as possible candidates for on-chip memory in the hybrid neurointerface under development.

View Article and Find Full Text PDF

We present a model of the molecular transistor, operation of which is based on the interplay between two physical mechanisms, peculiar to open quantum systems that act in concert: [Formula: see text] -symmetry breaking corresponding to coalescence of resonances at the exceptional point of the molecule, connected to the leads, and Fano-Feshbach antiresonance. This switching mechanism can be realised in particular in a special class of molecules with degenerate energy levels, e.g.

View Article and Find Full Text PDF

The effect of deep breathing controlled in both rate and amplitude on the heart rate variability (HRV) and respiration-dependent blood flow oscillations of forearm and finger-pad skin has been studied in 29 young healthy volunteers from 18 to 25 years old. To reveal the effect of the segments of the vegetative autonomic nervous system on the amplitudes of HRV and respiration-dependent oscillations of skin blood flow we estimated the parameters of the cardiovascular system into two groups of participants: with formally high and low sympathovagal balance values. The sympathovagal balance value was judged by the magnitude of LF/HF power ratio calculated for each participant using the spontaneous breathing rhythmogram.

View Article and Find Full Text PDF