Optical atomic clocks use electronic energy levels to precisely keep track of time. A clock based on nuclear energy levels promises a next-generation platform for precision metrology and fundamental physics studies. Thorium-229 nuclei exhibit a uniquely low-energy nuclear transition within reach of state-of-the-art vacuum ultraviolet (VUV) laser light sources and have, therefore, been proposed for construction of a nuclear clock.
View Article and Find Full Text PDFThe 8.4 eV nuclear isomer state in Th-229 is resonantly excited in Th-doped CaF_{2} crystals using a tabletop tunable laser system. A resonance fluorescence signal is observed in two crystals with different Th-229 dopant concentrations, while it is absent in a control experiment using Th-232.
View Article and Find Full Text PDFWe have grown [Formula: see text]Th:CaF[Formula: see text] and [Formula: see text]Th:CaF[Formula: see text] single crystals for investigations on the VUV laser-accessible first nuclear excited state of [Formula: see text]Th, with the aim of building a solid-state nuclear clock. To reach high doping concentrations despite the extreme scarcity (and radioactivity) of [Formula: see text]Th, we have scaled down the crystal volume by a factor 100 compared to established commercial or scientific growth processes. We use the vertical gradient freeze method on 3.
View Article and Find Full Text PDFA suitable scheme to continuously create inversion on an optical clock transition with negligible perturbation is a key missing ingredient required to build an active optical atomic clock. Repumping of the atoms on the narrow transition typically needs several pump lasers in a multi step process involving several auxiliary levels. In general this creates large effective level shifts and a line broadening, strongly limiting clock accuracy.
View Article and Find Full Text PDFWe present a measurement of the low-energy (0-60 keV) γ-ray spectrum produced in the α decay of ^{233}U using a dedicated cryogenic magnetic microcalorimeter. The energy resolution of ∼10 eV, together with exceptional gain linearity, allows us to determine the energy of the low-lying isomeric state in ^{229}Th using four complementary evaluation schemes. The most precise scheme determines the ^{229}Th isomer energy to be 8.
View Article and Find Full Text PDF