Publications by authors named "G A Kassavetis"

RNA polymerase II (Pol II) elongation is a critical step in gene expression. Here we found that NDF, which was identified as a bilaterian nucleosome-destabilizing factor, is also a Pol II transcription factor that stimulates elongation with plain DNA templates in the absence of nucleosomes. NDF binds directly to Pol II and enhances elongation by a different mechanism than that used by transcription factor TFIIS.

View Article and Find Full Text PDF

Tardigrades, also known as water bears, are animals that can survive extreme conditions. The tardigrade contains a unique nuclear protein termed Dsup, for damage suppressor, which can increase the resistance of human cells to DNA damage under conditions, such as ionizing radiation or hydrogen peroxide treatment, that generate hydroxyl radicals. Here we find that Dsup is a nucleosome-binding protein that protects chromatin from hydroxyl radicals.

View Article and Find Full Text PDF

Transcription by RNA polymerase II initiates at the core promoter, which is sometimes referred to as the "gateway to transcription." Here, we describe the properties of the RNA polymerase II core promoter in The core promoter is at a strategic position in the expression of genes, as it is the site of convergence of the signals that lead to transcriptional activation. Importantly, core promoters are diverse in terms of their structure and function.

View Article and Find Full Text PDF

The regulation of transcription initiation is critical for developmental and cellular processes. RNA polymerase II (Pol II) is recruited by the basal transcription machinery to the core promoter where Pol II initiates transcription. The core promoter encompasses the region from -40 to +40 bp relative to the +1 transcription start site (TSS).

View Article and Find Full Text PDF

CSB/ERCC6 belongs to an orphan subfamily of SWI2/SNF2-related chromatin remodelers and plays crucial roles in gene expression, DNA damage repair, and the maintenance of genome integrity. The molecular basis of chromatin remodeling by Cockayne syndrome B protein (CSB) is not well understood. Here we investigate the molecular mechanism of chromatin remodeling by Rhp26, a CSB ortholog.

View Article and Find Full Text PDF