Publications by authors named "G A Junter"

Because viruses still represent a significant threat to human and animal health worldwide, the development of effective weapons against viral infections remains a top priority for the biopharmaceutical industry. This article reviews the dietary and pharmaceutical applications of polysaccharides (PS), first of all chitosan, in the prevention and treatment of viral diseases, focusing more particularly on solid or gel micro/nanoparticulate systems. The intrinsic antiviral activity of PS and their immunostimulatory effects, implemented in animal and human diets, are first surveyed.

View Article and Find Full Text PDF

Viruses still pose a significant threat to human and animal health worldwide. In the fight against viral infections, high-purity viral stocks are needed for manufacture of safer vaccines. It is also a priority to ensure the viral safety of biopharmaceuticals such as blood products.

View Article and Find Full Text PDF

Viral filtration is a critical step in the purification of biologics and in the monitoring of microbiological water quality. Viral filters are also essential protection elements against airborne viral particles. The present review first focuses on cellulose-based filter media currently used for size-exclusion and/or adsorptive filtration of viruses from biopharmaceutical and environmental water samples.

View Article and Find Full Text PDF

Unlabelled: Surface treatment by natural or modified polysaccharide polymers is a promising means to fight against implant-associated biofilm infections. The present review focuses on polysaccharide-based coatings that have been proposed over the last ten years to impede biofilm formation on material surfaces exposed to bacterial contamination. Anti-adhesive and bactericidal coatings are considered.

View Article and Find Full Text PDF

While recent studies focused on Quorum Sensing (QS) role in the cell-to-cell communication in free or biofilm cultures, no work has been devoted up to now to investigate the communication between sessile and planktonic bacteria. In this aim, we elaborated an original two-chambered bioreactor and used a proteomic approach to study the alterations induced by Pseudomonas aeruginosa biofilm cells on protein expression in planktonic counterparts (named SIPs for Surface-Influenced Planktonics). Proteomic analyses revealed the existence of 31 proteins whose amount varied in SIPs, among which five corresponded to hypothetic proteins and two (the Fur and BCP proteins) are involved in bacterial response to oxidative stress.

View Article and Find Full Text PDF