Publications by authors named "G A Grieves"

Photodissociation dynamics of methyl iodide (CH3I) adsorbed on both amorphous solid water (ASW) and porous amorphous solid water (PASW) has been investigated. The ejected ground-state I((2)P3∕2) and excited-state I((2)P1∕2) photofragments produced by 260- and 290-nm photons were detected using laser resonance-enhanced multiphoton ionization. In contrast to gas-phase photodissociation, (i) the I((2)P3∕2) photofragment is favored compared to I((2)P1∕2) at both wavelengths, (ii) I((2)P3∕2) and I((2)P1∕2) have velocity distributions that depend upon ice morphology, and (iii) I2 is produced on ASW.

View Article and Find Full Text PDF

Surface ejection of H(+)(H(2)O)(n=1-8) from low energy electron irradiated water clusters adsorbed on graphite and graphite with overlayers of Ar, Kr or Xe results from intermolecular Coulomb decay (ICD) at the mixed interface. Inner valence holes in water (2a(1)(-1)), Ar (3s(-1)), Kr (4s(-1)), and Xe (5s(-1)) correlate with the cluster appearance thresholds and initiate ICD. Proton transfer occurs during or immediately after ICD and the resultant Coulomb explosion leads to H(+)(H(2)O)(n=1-8) desorption with kinetic energies that vary with initiating state, final state, and interatomic or molecular distances.

View Article and Find Full Text PDF

The interaction and autoionization of HCl on low-temperature (80-140 K) water ice surfaces has been studied using low-energy (5-250 eV) electron-stimulated desorption (ESD) and temperature programmed desorption (TPD). There is a reduction of H(+) and H(2)(+) and a concomitant increase in H(+)(H(2)O)(n=1-7) ESD yields due to the presence of submonolayer quantities of HCl. These changes are consistent with HCl induced reduction of dangling bonds required for H(+) and H(2)(+) ESD and increased hole localization necessary for H(+)(H(2)O)(n=1-7) ESD.

View Article and Find Full Text PDF

A solid-state chemical model is given for the production of O2 by electronic excitation of ice, a process that occurs on icy bodies in the outer solar system. Based on a review of the relevant available laboratory data, we propose that a trapped oxygen atom-water complex is the principal precursor for the formation of molecular oxygen in low-temperature ice at low fluences. Oxygen formation then occurs through direct excitation of this complex or by its reaction with a freshly produced, nonthermal O from an another excitation event.

View Article and Find Full Text PDF