Publications by authors named "G A Gintant"

The ICH E14/S7B Questions and Answers (Q&As) guideline introduces the concept of a "double negative" nonclinical scenario (negative hERG assay and negative in vivo QTc study) to demonstrate that a drug does not produce a clinically relevant QT prolongation (i.e., no QT liability).

View Article and Find Full Text PDF

Recent updates and modifications to the clinical ICH E14 and nonclinical ICH S7B guidelines, which both relate to the evaluation of drug-induced delayed repolarization risk, provide an opportunity for nonclinical in vivo electrocardiographic (ECG) data to directly influence clinical strategies, interpretation, regulatory decision-making and product labeling. This opportunity can be leveraged with more robust nonclinical in vivo QTc datasets based upon consensus standardized protocols and experimental best practices that reduce variability and optimize QTc signal detection, i.e.

View Article and Find Full Text PDF

The voltage-gated sodium channel Na1.7 is an attractive target for the treatment of pain based on the high level of target validation with genetic evidence linking Na1.7 to pain in humans.

View Article and Find Full Text PDF

The content of this article derives from a Health and Environmental Sciences Institute (HESI) consortium with a focus to improve cardiac safety during drug development. A detailed literature review was conducted to evaluate the concordance between nonclinical repolarization assays and the clinical thorough QT (TQT) study. Food and Drug Administration and HESI developed a joint database of nonclinical and clinical data, and a retrospective analysis of 150 anonymized drug candidates was reviewed to compare the performance of 3 standard nonclinical assays with clinical TQT study findings as well as investigate mechanism(s) potentially responsible for apparent discrepancies identified.

View Article and Find Full Text PDF

Advances in non-clinical in vitro models, higher throughput approaches and the promise of human-derived preparations require methods to reliably assess the fidelity of translation of such assays, compared with in vivo models and clinical studies. This review discusses general principles and parameters useful to evaluate the value of non-clinical assays typically used to guide compound progression. I first consider the biological characteristics (including sensitivity and ability to replicate relevant responses) of models that form the foundation of an assay based on the questions posed.

View Article and Find Full Text PDF