It has been 10 years since CRISPR/Cas technology was applied to edit the genomes of various organisms. Its ability to produce a double-strand break in a DNA region specified by the researcher started a revolution in bioengineering. Later, the Base Editing (BE) method was developed.
View Article and Find Full Text PDFCRISPR/Cas technology of genome editing is a powerful tool for making targeted changes in the DNA of various organisms, including plants. The choice of the precise nucleotide sequence (protospacer) in the gene to be edited is important in the design of guide RNA, which can be carried out by specialized software. We review and compare all the known on-line and off-line resources for guide RNA design, with special attention paid to tools capable of searching for off-target edits sites in plant genomes.
View Article and Find Full Text PDFHeritable phenotypic alterations occurring during plant ontogenesis under the influence of environmental factors are among the most intriguing genetic phenomena. It was found that male-sterile sorghum hybrids in the 9E cytoplasm from the F1 and F2 generations, which were obtained by crossing CMS lines with different fertile lines grown in field conditions, were transferred to greenhouse produce fertile tillers. Lines created by the self-pollination of revertant tillers exhibit complete male fertility upon cultivation under various environments (in the field, Tdry plot,(y) Tirrigated plot(y)).
View Article and Find Full Text PDFThe most significant theories of the appearance and maintenance of sex are presented. However, in the overwhelming majority of existing theories, the problem of sex, which is the central problem of evolutionary biology, is considered primarily through the prism of reproductive features of living organisms, whereas the issue of molecular driving forces of sexual reproduction id restricted to the possible role of mobile genetic elements (MGEs) in the appearance of sexual reproduction. The structural and functional significance of MGEs in the genomic organization of plants is illustrated.
View Article and Find Full Text PDFEthidium bromide treatment (15 mg/l, 26 degrees C, 18 h) of a sorghum Zheltozernoe 10 callus culture yielded line Zh10-brl displaying multiple genetic instability. The line was characterized by a broad variety of mutations, which were identified in consecutive generations obtained from one initial regenerant via self-pollination. The mutation caused male sterility (male sterility, generation R1), a low plant height (dwarfness, R2), a reduced awn length (awnless, R3), yellow leaves in seedlings (xantha, R6), leaf variegation (leaf variegation, R6), leaf bleaching (virescence, R6), etc.
View Article and Find Full Text PDF