A simple theory has been developed to explain quantitatively the multiple crystal growth rate minima observed experimentally in polyethylene brassylates (PEBs), polymers with regularly spaced "chemical defects", in this case, diester groups separated by 11 methylenes. The minima occur at the transitions where the fold length drops from 4 to 3 repeat units and from 3 to 2 units. An analytical rate-equation model was developed with elementary attachment and detachment steps of individual monomer repeat units, also including postattachment stem lengthening (stem conversion).
View Article and Find Full Text PDFCurrently arbitrary, inconsistent and non-evidence-based age cutoffs are used in the literature to classify pediatric emergencies. None of these classifications have valid medical rationale. This leads to confusion and poor comparability of the different study results.
View Article and Find Full Text PDFHelical structures continue to inspire, prompted by examples such as DNA double-helix and alpha-helix in proteins. Most synthetic polymers also crystallize as helices, which relieves steric clashes by twisting, while keeping the molecules straight for their ordered packing. In columnar liquid crystals, which often display useful optoelectronic properties, overall helical chirality can be induced by inclusion of chiral chemical groups or dopants; these bias molecular twist to either left or right, analogous to a magnetic field aligning the spins in a paramagnet.
View Article and Find Full Text PDFCondensed matter textbooks teach us that melting cannot be continuous and indeed experience, including with polymers and other long-chain compounds, tells us that it is a strongly first-order transition. However, here we report nearly continuous melting of monolayers of ultralong n-alkane CH on graphite, observed by AFM and reproduced by mean-field theory and MD simulation. On heating, the crystal-melt interface moves steadily and reversibly from chain ends inward.
View Article and Find Full Text PDF